5.1.4.4. Конструкция
и принцип действия
наполнительных
устройств
Наполнение бутылок, естественно, является одним из важнейших процессов, в ходе которого все качественные параметры разливаемого напитка должны сохраняться без изменений. Для этого наполнительные устройства в зависимости от предъявляемых напитками требований должны быть различными по конструкции и функции.
Наполнительные устройства являются сложными по конструкции системами с различными усовершенствованиями, которые следует рассмотреть отдельно. К ним относятся следующие механизмы:
центрирующие колокольчики;
наливные клапаны с трубками;
наливные клапаны без трубок;
системы управления клапанами;
системы наполнения по объему.
Центрирующий колокольчик
Для соединения бутылки с наполнительным устройством имеются, по существу, две возможности:
либо поднять бутылку и прижать ее к кла пану, либо
прижать клапан к бутылке.
Ниже будет показано, что вторая возможность реализуется при розливе в банки. При наполнении бутылок всегда поднимают бутылку, однако чтобы добиться правильного центрирования бутылок по отношению к наполнительному устройству, используется центрирующий колокольчик, который поднимается вместе с бутылкой (рис. 5.24). Колокольчик устанавливает ее по центру наполнительного устройства и прижимает к нему.
Наливные клапаны с трубкой
При использовании наливных клапанов с трубкой пиво наливается через наливную трубку, конец которой располагается непосредственно над дном бутылки. Тем самым бутылка наполняется медленно снизу вверх без
Рис. 5.24. Центрирующий колокольчик с направляющей
стекания наливаемого пива по стенкам бутылки, и поэтому поглощение кислорода в этом случае находится на очень низком уровне.
В наливной трубке имеется отверстие для выхода газа на высоте заданного уровня наполнения бутылки, которое связано с каналом возврата газа.
Внутренний диаметр наливной трубки ограничивается:
горлышком бутылки (« 17 мм);
наружным диаметром трубки (« 14 мм);
внутренним диаметром трубки (10-12 мм).
В связи с этим всегда стараются ускорить скорость течения жидкости при помощи перепада давления.
В ходе процесса наполнения создающий противодавление диоксид углерода возвращается через возвратную воздушную трубку обратно в возвратный газовый канал. Поэтому бутылка будет наполнена лишь до входного отверстия трубки возвратного газового канала, так как газ, находящийся выше этой точки, уйти уже не может. После закрытия наливного клапана наливная трубка еще находится в бутылке, и остатки продукта в ней могут стечь. Естественно,
этот объем учитывается при определении высоты отверстия в трубке возврата газа.
Чтобы повысить скорость наполнения в начальной фазе, можно открыть еще один клапан на канале возврата газа в атмосферу, установив тем самым перепад давлений, что ускорит скорость течения жидкости (быстрое наполнение). Близко к концу процесса наполнения этот дополнительный клапан закрывается, и наполнение продолжается с «нормальной» скоростью. При этом получаются три фазы наполнения:
1 короткая начальная фаза замедленного наполнения;
более продолжительная фаза быстро го наполнения;
короткая фаза замедленного напол нения.
Процесс наполнения с использованием клапанов с наливной трубкой
Фаза 1: Исходное положение
Бутылка захватывается центрирующим колокольчиком, и поднимается надеваясь горлышком на наливную трубку.
Фаза 2: Создание противодавления при помощи СО2 (синий цвет)
После прижатия бутылки в нее поступает СО2, вытесняя содержащийся в бутылке воздух снизу вверх.
Фаза 3: Начальная фаза наполнения — отверстие форсунка 1 открыто
Клапан для жидкости открывается; пиво по наливной трубке течет вниз и вытесняет СО2 вверх. Скорость течения определяется небольшим поперечным сечением отверстия 1 в канале возврата газа. Благодаря малому перепа-
Синим цветом обозначено создание противодавления, зеленым — возвратный газ, желтым— пиво, розовым — программа CIP. Более подробное объяснение см. в тексте
561
8
ду давления пиво течет медленно и не пенится. Эта фаза длится лишь несколько секунд, пока пиво не поднимется примерно на 10-20 мм по наливной трубке.
Фаза 4: Фаза быстрого налива — отверстия 1 и 2 открыты
Путем подключения отверстия с большим поперечным сечением 2 увеличивается перепад давления и тем самым повышается скорость течения; эта фаза длится большую часть времени налива.
Фаза 5: Фаза замедления — отверстие 1 открыто
Вследствие закрытия отверстия 2 пиво продолжает медленно течь, поднимаясь к горлышку бутылки. Таким образом, предотвращается нежелательный перелив бутылки.
Фаза 6: Закрытие клапана для жидкости
Как только пиво достигнет заданного уровня наполнения бутылки, жидкостный клапан закроется. Давление в бутылке сразу же падает до уровня давления в трубопроводе возврата газа, и таким образом происходит первый сброс давления.
Фаза 7: Сброс давления до атмосферного давления
Второй ступенью сброса давления является сброс его до атмосферного давления.
Фаза 8: Опорожнение наливной трубки
После установления связи между трубопроводом СО2 и наливной трубкой, оставшееся в ней пиво стекает в бутылку, благодаря чему достигается предусмотренное количество наполнения. Затем бутылка опускается и направляется в автомат для укупоривания.
Фаза CIP (9)
Все трубопроводы соединены между собой, и моющий раствор, а в последствии вода подаются в режиме циркуляции, чтобы обработать все участки, подверженные инфицированию микроорганизмами.
Процесс наполнения налива с использованием клапанов без наливных трубок
Узкое горлышко бутылки предопределяет пределы допустимого диаметра наливных трубок
и тем самым — скорость наполнения и производительность линии.
В настоящее время стремятся ускорить процесс наполнения путем использования клапанов без наливных трубок. При этом пиво приходится направлять по стенкам бутылки, что неизбежно увеличивает опасность поглощения пивом кислорода воздуха.
Т акие устройства зачастую называют «наливными устройствами с короткой трубкой» — в отличие от систем с длинными наливными трубками. Однако такое обозначение неправильно, так как видимая короткая трубка является трубкой возвратного газа, а разливаемое пиво поступает по внутренним стенкам бутылки. Включение в систему короткой трубки неизбежно привело бы к вспениванию пива и очень высокому поглощению кислорода.
Предпринимаются попытки сначала удалить воздух при помощи вакуума и заменить его на СО2, однако в этом случае при наполнении бутылки удаленный из нее воздух вместе с СО2 будет возвращен в кольцевой коллектор и, как следствие, повысится содержание кислорода в кольцевом распределительном резервуаре. Во избежание нежелательных последствий СО2 приходится постоянно обновлять, а это означает относительно высокий расход СО2 (около 320— 350 г СО2/гл пива).
Содержание кислорода в розлитом пиве благодаря двойному вакуумированию (имеется в виду следующая последовательность операций: вакуумирование — создание противодавления СО2 — вакуумирование — создание противодавления) снизится до минимума, а стойкость пива повысится. Такой способ розлива без трубок в настоящее время широко распространен и его применение хорошо себя зарекомендовало.
Наливные клапаны без трубок имеют сравнительно высокую производительность, так как для впуска напитка они могут использовать практически всю входную площадь горлышка бутылки, которая уменьшается только на площадь сечения трубки возвратного газа. «За-
563
хлебывание» (как, например, при шприцевании бутылок) здесь исключено.
Принцип действия наливного клапана (типа VK2V фирмы Krones, г. Нойтраублинг) представлен в качестве примера на рис. 5.26.
Фаза 1: Первая вакуумирование
Бутылка прижимается центрирующим колокольчиком (5) вплотную (герметично) к наполнительному устройству, и при помощи неподвижного упора (10) открывается вакуумный клапан (9), 90%-ное вакуумирование происходит очень быстро. Поднимаемый центрирующим колокольчиком вакуумный предохранительный клапан (22) препятствует прерыванию вакуума, если бутылка не была своевременно поднята.
Фаза 2: Дополнительная СОг — промывка
С помощью роликового подъемника (14) на короткое время открывается газовый клапан (15), и СО2 из кольцевого резервуара (3) поступает в бутылку и промывает ее. Этот процесс очень непродолжительный и заканчивается возвращением подъемника в исходное положение. Давление в бутылке повышается примерно до уровня атмосферного.
Фаза 3: Второе вакуумирование
Повторяется процесс фазы 1 и заново создается примерно 90%-ный вакуум. При таком вакууме еще оставшийся в бутылке воздух будет удален при помощи СО2 и таким образом содержание воздуха в бутылке уменьшится еще примерно на 1%.
Фаза 4: Создание противодавления
Повторяется процесс фазы 2, но он занимает более продолжительное время. Входящий поток СО2 после двойного вакуумирования устанавливает в бутылке очень высокую концентрацию СО2; одновременно в бутылке устанавливается давление такое же, как в кольцевом резервуаре. Фазы 3 и 4 на рисунках не представлены.
Фаза 5: Наполнение
После уравнивания давления между бутылкой и в кольцевым резервуаром разливочного
Рис. 5.26. Система наполнения бутылки без наливной трубки:
1— кольцевой резервуар разливочной машины; 2 — пиво; 3 — С02; 4 — бутылка; 5 — центрирующий колокольчик; 6 — трубка возврата газа; 7 — отводной конус; 8 — вакуумная вытяжка; 9— клапан вакуумного трубопровода (в положении «открыто»); под ним— клапан разрежения; 10— неподвижный упор для управления вакуумным клапаном; 11 — клапан для подачи СО2 (закрыт); 12 — клапан для отвода СО2; 13 — роликовый рычаг для клапана СО2; 14— клапанный рычаг для открытия и закрытия клапана СО2 (15) и наливного клапана (16) с клапанным уплотнением (17) в резервуаре; 18— отвод СО2; 19 — неподвижная гильза; 20 — пружины для открытия и закрытия наливного клапана; 21 — канал разряжения; 22 — вакуумный предохранительный клапан
564
автомата наружная пружина (20) открывает уплотнение клапана (17). Пиво может течь только вниз и оно посредством отводящего конуса (9) направляется против стенок бутылки, по которым оно стекает тонким потоком. СО2 отводится через трубу возврата (6) обратно в резервуар.
Фаза 6: Окончание процесса наполнения
Как только пиво дойдет до нижнего края трубки возврата газа, оно по закону сообщающихся сосудов поднимается по трубке вверх, тогда как газ, оставшийся в бутылке над поверхностью пива, выйти уже не может. Насколько высоко поднимется в трубке пиво, зависит от различных факторов, таких как скорость наполнения,
давление и др. На этой фазе наблюдается небольшой перелив в бутылке, который в дальнейшем должен быть скорректирован.
Точная высота наполнения является важнейшим критерием для качества бутылочного пива: недолив обманывает потребителя и налоговые органы, перелив снижает прибыль: при производительности линии в 100 000 гл (= 20 млн бутылок) разница в 1 мл на поллит-ровую бутылку составляет уже 200 гл! Меньшие количества тоже суммируются.
Фаза 7: Стадия корректировки
Если бы пиво из трубки могло свободно вылиться обратно в бутылку, то содержимое бутылки бесконтрольно увеличилось бы, что было бы недопустимо. Чтобы добиться точно-
565
Фаза 8: Разряжение (на рисунках не приведено)
В заключение движением роликового рычага закрывается газовый клапан (15) и посредством стационарного копира открывается расположенный сбоку разгрузочный клапан (9).
Через отверстие с малым поперечным сечением отводится избыточное давление, которое постепенно выравнивается с атмосферным. Это препятствует немедленному вспениванию.
Стадия мойки CIP
Линия розлива в настоящее время может нормально функционировать лишь в том случае, если она приспособлена к мойке в системе CIP. Для этого под наливными клапанами устанавливаются моечные крышки и посредством центрирующих колокольчиков они плотно прижимаются к наполнительным устройствам. Таким образом, в режиме циркуляции может быть промыта вся система.
Система управления процессом розлива Управление процессом розлива в последние годы претерпело большие изменения.
Вплоть до пятидесятых годов применялся пробковый розлив, названный так по проб-
566
воздух,
пиво и возвратный воздух
и в процессе наполнения впрыскивал пиво, находящееся выше пробкового крана, в кольцевой резервуар и тем самым — в бутылки. В дальнейшем были разработаны клапаны, которые допускали наружное управление только в газовом секторе над поверхностью пива. При этом, хотя пиво и не соприкасалось с движущимися снаружи деталями, оно находилось в постоянном соприкосновении с различными пружинами и другими элементами, что неблагоприятно сказывалось на его микробиологическом состоянии.
В связи с этим были предприняты определенные мероприятия для того, чтобы как можно дальше отойти от использования пру-
жин и другой арматуры и найти другие возможности регулирования. Важным шагом в этом направлении было применение вместо клапанов, управляемых извне механически, мембранных клапанов с пневмоприводом (рис. 5.27), в которых газ, создающий противодавление, направлялся бы только вдоль уплотняющей мембраны.
Мембранный клапан приводится в действие из сети сжатого воздуха системы управления (рис. 5.28). Такая система управления позволяет избежать необходимости размещения всех пружин и прочих деталей на наполнительном устройстве.
Многие разновидности разливочных автоматов оснащены на выходе пива винтовыми насадками, придающими струе пива вращение; они имеют специальную конусную фор-
567
данный момент времени они
могут быть или открытыми, или
закрытыми
AnprePgummi — прижимная резиновая прокладка;
Zentrierglocke— центрирующий колокольчик;
Sonde — датчик;
Produktauslauf mit Dralleinsatz — выход продукта с винтовой насадкой;
Ruckgas — возвратный газ;
Spanngas— создающий противодавление газ;
Produktzufuhr — подвод продукта;
Ventilkegel — конус клапана;
Pneumatische Membranventile — пневматический мембранный клапан;
Produktkanal — продуктовый канал;
Pneumatischer Steuerzylinder — пневматический управляющий цилиндр;
Dampfkanal — паровой канал;
Pneumatisches
— пневматический мембранный клапан
© 568
му, способствующую тому, чтобы пиво скользило по стенкам бутылок вниз по спирали.
В последние годы появились некоторые новые идеи по улучшению процессов розлива, например:
вместо создания противодавления в вакуу- мированной бутылке углекислым газом можно продуть бутылку перегретым паром и тем самым убить еще оставшиеся в вы мытой бутылке микроорганизмы; этот про цесс по желанию может быть повторен, что увеличивает эффект, к тому же продувка бутылок более дешевым паром сокращает расход более дорогостоящего СО2;
уровень наполнения в некоторых моделях регулируется при помощи электронных датчиков, которые посредством чувстви тельных сенсоров отслеживают уровень жидкости в бутылке и при достижении за данного уровня переключают подачу пива на стадию медленного наполнения.
Окончательное и точное перекрытие притока пива также осуществляется с помощью очень чувствительного механического датчика, который помещен в защитную трубку (воздушную трубку). В качестве примера ниже приводится наполнительное устройство разливочного автомата типа Innofill ER (фирма KHS, г. Дортмунд).
Электронное управление наполнительным устройством происходит следующим образом (рис. 5.29):
вакуумирование бутылки или продувка паром;
промывка бутылки СО2;
вакуумирование бутылки;
создание противодавления при помощи СО2;
медленное начало наполнения — быстрое наполнение;
стадия замедления;
конец наполнения с предварительным снятием давления;
окончательное снятие давления.
- Глава 11 написана г. О. Митом, г. Гамбург
- Сырье 37
- Визуальное и ручное обследование 180
- 2.10. Техника безопасности в солодовенном предприятии (цехе) 192
- Кипячение сусла 312
- 3 .9.3. Аэрация сусла 347
- Управление и контроль за технологическими процессами производства сусла 351
- Техника безопасности при производстве сусла 353
- 4.2. Разведение чистой культуры дрожжей 380
- Комплектная линия розлива 656
- 6.1. Материалы, используемые для изготовления емкостей и трубопроводов, и их устойчивость по отношению
- Проведение мойки и дезинфекции в системе cip 685
- 11. От автоматизации - к интеграции технологических
- 11.2. Обозначения и системный подход к проектированию систем автоматизации пивоварения в соответствии с общими
- 11.3. КиПиА согласно din и в практике автоматизации
- 25 Балтика
- 0. Пиво — древнейший народный напиток
- 1. Сырье
- 1.1. Ячмень
- 1.1.1. Группы и сорта ячменя
- 1.1.1.1. Группы ячменя
- 1.1.1.2. Сорта ячменя
- 1.1.2. Возделывание ячменя
- 1.1.3. Строение
- 1.1.3.1. Наружное строение
- 1.1.3.2. Внутреннее строение
- 1.1.4. Состав и свойства отдельных частей ячменя
- 1.1.4.1.2. Сахар
- 1.1.4.1. Углеводы
- 1.1.4.2. Белковые вещества
- 1.1.4.2.2. Продукты
- 1.1.4.3. Жиры (липиды)
- 1.1.4.4. Минеральные вещества
- 1.1.4.5. Прочие вещества
- 1.1.5. Оценка качества ячменя
- 1.1.5.1. Визуальное и ручное обследование
- 1.1.5.2. Технохимический анализ
- 1.1.5.2.2. Масса 1000 зерен
- 1.1.5.2.3. Масса гектолитра
- 1.1.5.2.4. Проба на срез
- 1.1.5.2.5. Технохимический анализ
- 1.1.5.3. Физиологические исследования
- 1.1.5.3.1. Прорастаемость
- 1.1.5.3.2. Энергия и способность прорастания
- 1 .2. Хмель
- 1.2.1. Области возделывания хмеля
- 1.2.2. Сбор, сушка и предохранение хмеля от порчи
- 1.2.2.1. Сбор хмеля
- 1.2.2.2. Сушка хмеля
- 1.2.2.3. Стабилизирующая обработка
- 1.2.3. Строение хмелевой шишки
- 1.2.4. Состав и свойства компонентов хмеля
- 1.2.4.1. Горькие вещества или хмелевые смолы
- 1.2.4.2. Хмелевое эфирное масло
- 1.2.4.3. Дубильные вещества (полифенолы)
- 1.2.4.4. Белковые вещества
- 1.2.5. Оценка качества хмеля
- 1.2.5.1. Ручная оценка качества хмеля в шишках
- 1.2.5.2. Содержание в хмеле горьких веществ
- 1.2.6. Сорта хмеля
- 1.2.7. Хмелепродукты
- 1.2.7.1. Гранулированный хмель
- 1.2.7.2. Экстракты хмеля
- 1.3. Вода
- 1.3.1. Круговорот воды
- 1.3.2. Потребление воды в пивоваренном производстве
- 1.3.3. Забор воды
- 1.3.3.1. Забор подземных вод
- 1.3.3.2. Забор поверхностных вод
- 1.3.3.3. Значение собственного водоснабженния
- 1.3.4. Требования к воде
- 1.3.4.1. Требования к питьевой воде
- 1.3.4.2. Требования к воде для пивоварения
- 1.3.5. Способы улучшения состава воды
- 1.3.5.1. Способы удаления взвешенных частиц
- 1.3.5.2. Удаление растворенных в воде веществ
- 1.3.5.3. Способы улучшения
- 1.3.5.3.1. Декарбонизация
- 1.3.5.4. Обеззараживание воды
- 1.3.5.4.1. Обеззараживание фильтрованием
- 1.3.5.4.2. Обеззараживание ультрафиолетом
- 1.3.5.4.3. Обеззараживание озоном
- 1.3.5.4.4. Обеззараживание
- 1.3.5.4.5. Обеззараживание двуокисью хлора
- 1.3.5.4.6. Обеззараживание ионами серебра
- 1.3.5.5. Способы деаэрации воды
- 1.4. Дрожжи
- 1.4.1. Строение и состав дрожжевой клетки
- 1.4.2. Обмен веществ дрожжевой клетки
- 1.4.3. Размножение и рост дрожжей
- 1.4.4. Характеристики
- 1.4.4.1. Морфологические признаки
- 1.4.4.2. Физиологические различия
- 1.4.4.3. Технологические различия при сбраживании
- 1.4.4.4. Систематическая классификация
- 1.5. Несоложеное сырье
- 1.5.1. Кукуруза
- 1.5.3. Ячмень
- 1.5.4. Сорго
- 1.5.5. Пшеница
- 1.5.6. Сахарный колер
- 1.5.7. Сахар
- 105 Балтика
- 2. Производство солода
- 2.1. Приемка, очистка, сортирование и транспортирование ячменя
- 2.1.1. Приемка ячменя
- 2.1.1.1. Приемка ячменя с рельсового или автомобильного транспорта
- 2.1.1.2. Приемка ячменя
- 2.1.2. Очистка
- 2.1.2.1. Предварительная очистка ячменя
- 2.1.2.2. Магнитные сепараторы
- 2.1.2.3. Камнеотборник
- 2.1.2.4. Обоечная машина
- 2.1.2.5. Триер
- 2.1.2.6. Сортирование ячменя
- 2.1.2.6.1. Основа
- 2.1.2.6.2. Сортировочный цилиндр
- 2.1.2.6.3. Планзихтер
- 2.1.3. Транспортирование ячменя и солода
- 2.1.3.1. Механические
- 2.1.3.1.1. Нория или элеватор
- 2.1.3.1.2. Шнековый транспортер
- 2.1.3.1.3. Скребковый цепной транспортер
- 2.1.3.1.4. Ленточный транспортер
- 2.1.3.2. Пневматические
- 2.1.3.2.1. Всасывающая
- 2.1.3.2.2. Нагнетательная
- 2.1.4.1. Циклоны
- 2.1.4.2. Пылеотделительный фильтр
- 2.1.4.2.1. Пылеотделительный фильтр старой конструкции
- 2.1.4.2.2. Пылеотделительный фильтр новой конструкции
- 2.1.4.2.2.1. Рукавный фильтр
- 2.1.4.2.2.2. Прочие
- 2.2. Сушка и хранение ячменя
- 2.2.1. Дыхание ячменя
- 2.2.2. Сушка ячменя
- 2.2.3. Охлаждение ячменя
- 2.2.4. Хранение ячменя
- 2.2.4.1. Хранение в силосах
- 2.2.4.2. Хранение на складах
- 2.2.4.3. Заражение вредителями
- 2.2.4.3.1. Насекомые-вредители
- 2.2.4.3.2. Плесени
- 2.3. Замачивание ячменя
- 2.3.1. Процессы, происходящие при замачивании
- 2.3.1.1. Водопоглощение
- 2.3.1.2. Снабжение кислородом
- 2.3.1.3. Очистка
- 2.3.2. Замочные чаны
- 2.3.3. Проведение замачивания
- 2.4. Проращивание ячменя
- 2.4.1. Процессы, происходящие при проращивании
- 2.4.1.1. Процессы роста
- 2.4.1.2. Образование ферментов
- 2.4.1.2.1. Ферменты,
- 2.4.1.2.2. Прочие группы ферментов
- 2.4.1.3. Превращения веществ при проращивании
- 2.4.1.3.1. Растворение и расщепление β-глюкана
- 2.4.1.3.2. Расщепление крахмала
- 2.4.1.3.3. Расщепление белковых веществ
- 2.4.1.3.4. Расщепление жиров (липидов)
- 2.4.1.3.5. Образование
- 2.4.1.3.6. Регуляторы прорастания
- 2.4.2. Способы проращивания
- 2.4.2.1. Токовая солодовня
- 2.4.2.2. Системы
- 2.4.2.2.1. Кондиционирование аэрационного воздуха
- 2.4.2.2.2. Солодовня барабанного типа
- 2.4.2.2.3. Солодовня ящичного типа
- 2.4.2.2.3.1. Прямоугольные
- 158 Рис. 2.52. Принцип работы башенной солодовни:
- 2.4.2.2.4. Системы с ежесуточным перемещением
- 2.4.2.3. Контроль
- 2.5. Сушка солода
- 2.5.1. Изменения, происходящие при сушке
- 2.5.1.1. Понижение влажности
- 2.5.1.2. Прерывание процессов прорастания и растворения
- 2.5.1.3. Образование красящих и ароматических веществ (реакции Майяра)
- 2.5.1.4. Образование дмс при сушке
- 2.5.1.5. Образование нитрозаминов
- 2.5.1.6. Инактивация ферментов
- 2.5.2. Устройство сушилок
- 2.5.2.1. Отопление и вентиляция сушилки
- 2.5.2.2. Двухъярусные сушилки (старая конструкция)
- 2.5.2.3. Сушилки
- 2.5.2.4. Высокопроизводительные сушилки с погрузочно-разгрузочными устройствами
- 2.5.2.5. Вертикальные сушилки
- 2.5.3. Процесс сушки
- 2.5.3.1. Производство светлого солода (пильзенского типа)
- 2.5.3.2. Производство темного солода (мюнхенского типа)
- 2.5.3.3. Выгрузка солода из сушилки
- 2.5.3.4. Контроль за процессом сушки
- 2.6. Обработка солода после сушки
- 2.6.1. Охлаждение
- 2.6.2. Очистка солода
- 2.6.3. Хранение солода
- 2.6.4. Полировка солода
- 2.7. Выход солода в производстве
- 2.8.2.5. Стекловидность
- 2.8.2.6. Рыхлость
- 2.8.2.7. Длина зародышевого листка
- 2.8.2.8. Всхожесть
- 2.8.2.9. Плотность
- 2.8.2.10. Метод окрашивания среза зерна (модификация Carlsberg)
- 2.8.3. Технохимический контроль
- 2.8.3.1. Влажность
- 2.8.3.2. Конгрессный способ затирания
- 2.8.4. Договор на поставку солода
- 2.9. Специальные типы солода и солод из прочих зерновых
- 2.9.1. Светлый солод пильзенского типа
- 2.9.2. Темный солод (мюнхенский тип)
- 2.9.3. Темный солод венского типа
- 2.9.4. Карамельный солод
- 2.9.5. Томленый солод
- 2.9.6. Жженый солод
- 2.9.7. Кислый солод
- 2.9.8. Солод короткого ращения
- 2.9.9. Пшеничный солод
- 2.9.10. Солод из прочих хлебных злаков
- 2.9.11. Солод из сорго
- 2.9.12. Красящее пиво
- 2.9.13. Применение
- 2.10. Техника безопасности в солодовенном предприятии (цехе)
- 3. Производство сусла
- 3.1. Дробление солода
- 3.1.1. Подработка солода
- 3.1.1.1. Удаление из солода пыли и камней
- 3.1.1.2. Взвешивание засыпи
- 3.1.1.2.1. Весы с опрокидывающимся ковшом
- 3.1.1.2.2. Весы с открывающимся днищем
- 3.1.2. Основы дробления
- 3.1.3. Сухое дробление
- 3.1.3.1. Шестивальцовые дробилки
- 206 Рис. 3.7. Шестивальцовая
- 3.1.3.2. Пятивальцовые дробилки
- 3.1.3.3. Четырехвальцовые дробилки
- 3.1.3.4. Двухвальцовые дробилки
- 3.1.3.5. Вальцы дробилки
- 3.1.3.6. Кондиционированное сухое дробление
- 3.1.3.7. Бункер для дробленых зернопродуктов
- 3.1.3.8. Молотковые дробилки
- 3.1.4. Мокрое дробление
- Откачка замочной воды.
- 3.1.5. Замочное
- 3.1.6. Оценка качества помола
- 3.2. Затирание
- 3.2.1. Превращения веществ при затирании
- 3.2.1.1. Цель затирания
- 3.2.1.2. Свойства ферментов
- 3.2.1.3. Расщепление крахмала
- 3.2.1.3.1. Влияние температуры
- 3.2.1.3.2. Влияние длительности
- 3.2.1.3.3. Влияние величины рН
- 3.2.1.3.4. Влияние концентрации затора на расщепление крахмала
- 3.2.1.3.5. Контроль расщепления крахмала
- 3.2.1.4. Расщепление β-глюкана
- 3.2.1.5. Расщепление белковых веществ
- 3.2.1.6. Превращения жиров (липидов)
- 3.2.1.8. Биологическое подкисление
- 3.2.1.8.1. Добавление неорганических кислот
- 3 .2.1.9. Состав экстрактивных веществ сусла
- 3.2,1.10. Заключительные рекомендации по проведению затирания
- 3.2.2. Заторные аппараты
- 3.2.3. Начало затирания
- 3.2.3.1. Гидромодуль затора
- 3.2.3.2. Температура начала затирания
- 3.2.4. Способы затирания
- 3.2.4.1. Различные точки
- 3.2.4.2. Настойные способы
- 3.2.4.3. Отварочные способы затирания
- 3.2.4.3.1. Одноотварочные способы
- 3.2.4.3.2. Двухотварочные способы
- 3.2.4.3.3. Трехотварочные способы
- 3.2.4.2.4. Специальные способы затирания
- 3.2.4.3.5. Способы затирания
- 3.2.5. Продолжительность затирания
- 3.2.6. Контроль затирания
- 3.3. Фильтрование затора
- 3.3.1. Первое сусло
- 3.3.2. Последняя промывная вода
- 3.3.3. Фильтрационный чан
- 3.3.3.1. Фильтрчан старой конструкции (рис. 3.46)
- 3.3.3.2. Фильтрационные чаны новой конструкции (рис. 3.48 и 3.48а)
- 3.3.3.3. Последовательность операций при работе на фильтрчане
- 3.3.4. Фильтрование
- 3.3.4.1. Фильтр-пресс старой конструкции
- 3.3.4.2.2.Последовательность операций при работе на фильтр-прессе 2001 (рис. 3.61а)
- 2. Фильтрование
- 3. Первое сжатие
- 4. Промывка дробины
- 5. Последнее сжатие
- 3.3.4.2.3.Прочие современные фильтр-прессы
- 3.3.5. Дробина
- 3.3.5.1. Транспортирование дробины
- 3.3.5.2. Анализ дробины
- 3.3.6. Солодовый экстракт
- 3.4. Кипячение сусла
- 3.4.1. Процессы, происходящие при кипячении сусла
- I растворение и превращение компонентов хмеля;
- I выпаривание воды;
- I стерилизация сусла;
- 3.4.1.3. Испарение воды
- 3.4.1.4. Стерилизация сусла
- 3.4.1.5. Разрушение всех ферментов
- 3.4.1.6. Повышение цветности сусла
- 3.4.1.7. Повышение кислотности сусла
- 3.4.1.8. Образование редуцирующих веществ (редуктонов)
- 3.4.1.9. Изменение содержания диметилсульфида во время и после кипячения сусла
- 3.4.1.10. Содержание цинка в сусле
- 3.4.1.11. Неохмеленное сусло
- 3.4.2. Устройство и обогрев сусловарочного котла
- 3.4.2.1. Сусловарочный котел с прямым обогревом
- 3.4.2.2. Сусловарочный котел с паровым обогревом
- 3.4.2.2.1. Температура
- 3.4.2.2.2. Оснащение сусловарочного котла с паровой рубашкой в виде двойного дна
- 3.4.2.2.3. Форма и материал
- Описание котла (выборочно)
- 3.4.2.2.4. Кипячение с использованием горячей воды (гидрокипячение)
- 3.4.2.3. Сусловарочные котлы
- 3.4.2.3.1. Кипячение при низком избыточном давлении с выносным кипятильником
- 3.4.2.4. Высокотемпературное кипячение сусла
- 3.4.2.5.1. Конденсация
- 3.4.2.6. Потребление энергии при кипячении сусла
- 3 .4.2.7. Конденсат вторичного пара
- 3.4.2.8. Сборник сусла
- 3.4.3. Технология кипячения сусла
- 3.4.3.1. Кипячение сусла
- 3.4.3.2. Внесение хмеля
- 3.4.3.2.1. Расчет дозировки хмеля
- 3.4.3.2.2. Состав и момент внесения хмеля
- 3.4.3.2.3. Способы внесения хмеля
- 3.4.4. Контроль готового сусла
- 3.5. Выход экстракта в варочном цехе
- 3 .5.1. Расчет выхода экстракта в варочном цехе
- 3.5.1.1. Определение массовой доли сухих веществ
- 3.5.1.2. Определение объемно-массовой доли сухих веществ в сусле (содержание экстракта в 1 гл сусла)
- 3.5.1.3. Пересчет объема горячего охмеленного сусла на холодное сусло
- 3.5.1.4. Расчет массы экстракта, полученного в варочном цехе
- 3.5.1.5. Определение выхода
- 3.5.2. Факторы, оказывающие влияние на выход экстракта в варочном цехе
- 3.5.3. Пример расчета выхода экстракта в варочном цехе
- 3.6. Состав оборудования варочного цеха
- 3.6.1. Количество аппаратов и их размещение
- 3.6.2. Размеры аппаратов варочного цеха
- 3.6.3. Материал для
- 3.6.4. Производственная
- 3.6.5. Варочные агрегаты
- 3.6.5.1. Варочные агрегаты мини-пивзаводов ресторанного типа
- 3.6.5.2. Интегральный варочный агрегат
- 3.6.5.3. Экспериментальные и учебные варочные агрегаты
- 3.7. Перекачка горячего охмеленного сусла
- 3.8. Отделение взвесей горячего сусла
- 3.8.1. Холодильная тарелка
- 3.8.2. Отстойный чан
- 3.8.3. Вирпул
- 3.8.3.1. Принцип действия вирпула
- 3.8.3.2. Конструкция вирпула
- 3.8.3.3. Технология осветления сусла в вирпуле
- 3.8.4. Сепараторы
- 3.8.4.1. Принцип
- 3.8.4.3. Устройство и способ действия
- 3.8.4.3.1. Принцип работы тарельчатых барабанов
- 3.8.5. Получение сусла из белкового отстоя
- 3 .9. Охлаждение
- 3.9.1. Процессы при охлаждении
- 3.9.1.1. Охлаждение сусла
- 3.9.1.2. Оптимальное удаление образующихся взвесей холодного сусла
- 3.9.1.3. Аэрация сусла
- 3.9.1.4. Изменения экстрактивности сусла
- 3.9.2. Аппараты
- 3.9.2.1. Устройство пластинчатого теплообменника
- I очень тонкие металлические пластины;
- 3.9.2.2. Принцип работы пластинчатого холодильника
- 3.9.2.3. Преимущества пластинчатого холодильника
- 3.9.3. Аэрация сусла
- 3.9.3.1. Устройства для аэрации сусла
- 3.9.3.2. Момент проведения аэрации дрожжей.
- 3.9.4. Аппараты для удаления взвесей холодного сусла
- 3.9.4.1. Кизельгуровый
- 3.9.4.2. Флотация
- 3.9.4.3. Сепарирование холодного сусла
- 3.9.5. Компоновка оборудования линии охлаждения сусла
- 3.10. Управление и контроль за технологическими процессами производства сусла
- 3.11. Техника безопасности при производстве сусла
- 3.11.1. Предупреждение несчастных случаев вблизи дробилки
- 3.11.2. Предупреждение несчастных случаев при работах в аппаратах варочного цеха
- 3.11.3. Предупреждение несчастных случаев при работе с сепараторами
- 4. Производство пива (брожение, созревание и фильтрование)
- 4.1. Превращения при брожении и созревании
- 4.1.1. Дрожжи
- 4.1.2. Метаболизм дрожжей
- 4.1.2.1. Сбраживание Сахаров
- 4.1.2.1.2. Получение энергии при брожении
- 4.1.2.2. Метаболизм азотистых веществ
- 4.1.2.5. Метаболизм минеральных веществ
- 4.1.3. Образование и расщепление побочных продуктов брожения
- 4.1.3.1. Диацетил (вицинальные дикетоны)
- 4.1.3.2. Альдегиды (карбонилы)
- 4.1.3.3. Высшие спирты
- 4.1.3.4. Эфиры
- 4.1.3.5. Сернистые соединения
- 4.1.3.6. Органические кислоты
- 4.1.4. Другие процессы и превращения
- 4.1.4.1. Изменения азотистого состава
- 4.1.4.2. Понижение рН
- 4.1.4.3. Изменение
- 4.1.4.4. Изменение цветности пива
- 4.1.4.5. Выделение горьких
- 4.1.4.6. Насыщенность пива со2.
- 4.1.4.7. Осветление и коллоидная стабилизация пива
- 4.1.5. Влияние на дрожжи различных факторов
- 4.1.6. Флокуляция дрожжей (хлопьеобразование)
- 4.2. Разведение чистой культуры дрожжей
- 4.2.1. Факторы,
- 4.2.2. Выделение пригодных дрожжевых клеток
- 4.2.3. Разведение чистой культуры в лаборатории
- 4.2.4. Разведение
- 4.2.4.1. Установки для
- 4.2.4.2. Ассимиляционный способ
- 4.2.4.3. Способ разведения
- 4.2.4.4. Выращивание дрожжей открытым способом
- 25 Л молодого пива для пересева;
- 4.3. Классическое брожение и созревание
- 4.3.1. Бродильные чаны и оснащение бродильного отделения
- 4.3.1.1. Бродильные чаны
- 4.3.1.2. Оснащение открытого бродильного отделения
- Дрожжевое отделение, где хранятся дрожжи.
- 4.3.2. Выход экстракта в бродильном отделении
- 4.3.3. Главное брожение в открытых чанах
- 4.3.3.1. Внесение дрожжей
- 4.3.3.1.1. Перемешивание и аэрация дрожжей
- 4.3.3.2. Технология брожения в чане
- 4.3.3.2.1. Стадии брожения
- 4.3.3.2.2. Температура брожения
- 4.3.3.3. Степень сбраживания
- 4.3.3.4. Перекачка пива из бродильного отделения
- 4.3.4. Сбор дрожжей из чана
- 4.3.5. Процессы, протекающие при созревании пива в танках традиционной конструкции
- 4.3.5.1. Насыщение пива диоксидом углерода под избыточным давлением
- 4.3.5.2. Осветление пива
- 4.3.6. Устройство классического отделения дображивания
- 4.3.6.1. Устройство отделения дображивания
- 4.3.6.2. Лагерные танки (танки дображивания)
- 4.3.7. Дображивание в лагерных танках
- 4.3.7.1. Перекачка пива
- 4.3.8. Соединение лагерного танка с линией розлива
- 4.3.8.1. Установление соединения
- 4.3.8.2. Давление при опорожнении танка
- 4.3.9. Перекачка из танков
- 4.3.9.1. Смеситель
- 4.3.9.2. Регулятор давления (друкреглер)
- 4.3.9.3. Получение пива
- 4.3.9.4. Глубокое охлаждение пива
- 4.3.9.5. Фильтрационные остатки
- 4.4. Брожение и созревание в цилиндроконических танках (цкт)
- 4.4.1. Конструкция и установка
- 4.4.1.1. Изготовление, форма и материал цкт
- 4.4.1.2. Размер цкт
- 4.4.1.2.1. Высота сусла в цктб
- 4.4.1.3. Установка и
- 4.4.2. Оборудование цкт
- 4.4.2.1. Контрольные приборы, элементы для обслуживания танка и предохранительная арматура
- 4.4.2.1.1. Оборудование для наполнения и опорожнения цкт
- 4.4.2.1.2. Арматура, устанавливаемая на куполе танка
- 4.4.2.1.3. Контрольные приборы
- 4.4.2.2. Охлаждение цкт
- 4.4.2.2.1. Потребность в холоде
- 4.4.2.2.2. Варианты охлаждения
- 4.4.2.2.3. Теплопередача
- 4.4.2.2.5. Теплоизоляция
- 4.4.2.3. Автоматизация и управление охлаждением
- I Измерение количества со2.
- 4.4.3. Брожение
- 4.4.3.1. Некоторые аспекты брожения и созревания в цкт
- 4.4.3.2. Холодное брожение — холодное созревание
- 4.4.3.3. Холодное брожение
- 4.4.3.4. Теплое брожение без давления — холодное созревание
- 4.4.3.5. Брожение под давлением
- 4.4.3.6. Холодное брожение — теплое созревание
- 4.4.3.7. Холодное главное брожение
- 4.4.3.8. Теплое главное брожение с нормальным или форсированным созреванием
- 4.4.4. Сбор дрожжей из цкт
- 4.4.4.1. Момент сбора дрожжей
- 4.4.4.2. Методы сбора дрожжей
- 4.4.4.3. Обработка и хранение семенных дрожжей
- 4.4.4.3.1. Аэрация семенных дрожжей
- 4.4.4.3.2. Температура хранения дрожжей
- 4.4.4.3.3 Способы хранения дрожжей
- 4.4.4.4. Контроль семенных дрожжей
- 4.4.5. Качество пива перед фильтрованием
- 4.4.6. Рекуперация пива из избыточных дрожжей (пиво из дрожжевого осадка)
- 4.4.6.1. Прессование дрожжей
- 4.4.6.2. Сепарация дрожжей
- 4.4.6.3. Мембранное фильтрование дрожжей
- 4.4.6.4. Обработка пива, рекуперированного из дрожжей
- 4.4.7. Мойка цкт
- 4.4.8. Рекуперация с02
- 4.4.9. Иммобилизованные дрожжи
- 4.5. Фильтрование пива
- 4.5.1. Виды фильтрования
- 4.5.1.1. Механизмы осаждения
- 4.5.1.2. Фильтрующие перегородки
- 4.5.1.3. Вспомогательные
- 1000Х). (Фото: Schenk Filterbau GmbH, г. Вальд-
- 4.5.2. Виды фильтров
- 4.5.2.1. Масс-фильтр
- 4.5.2.2. Намывные фильтры
- 4.5.2.2.1. Намывка фильтрующих слоев
- 4.5.2.2.1.3. Роль кислорода
- 4.5.2.2.1.4. Дозаторы
- 4.5.2.2.2 Намывной рамный фильтр-пресс
- 4.5.2.2.3. Намывной свечной (патронный) фильтр
- 4.5.2.2.4. Намывной дисковый фильтр (фильтр с горизонтальными ситами)
- 4.5.2.2.5. Технические проблемы при фильтровании
- 4.5.2.2.6. Переработка разбавленных фильтрационных остатков
- 4.5.2.2.7. Кизельгуровая фильтрационная установка
- 4.5.2.3. Пластинчатый фильтр-пресс
- 4.5.2.4. Мембранные фильтры
- 4.5.2.4.1. Фильтр с модульными элементами
- 4.5.2.4.2. Мембранный свечной фильтр
- 4.5.2.5. Фильтрационная
- 4.5.2.6. Тонкость фильтрования
- 4.5.2.7. Тангенциально-поточное (Cross-flow) фильтрование
- 4.6. Стабилизация пива
- 4.6.1. Биологическая стабилизация пива
- 4.6.1.1. Пастеризация
- 4.6.1.2. Пастеризация в потоке
- 4.6.1.2.1. Пластинчатый пастеризатор
- 4.6.1.2.2. Температура и длительность термической обработки
- 4.6.1.2.3. Влияние пастеризации в потоке на качество пива
- 4.6.1.3. Горячий розлив пива
- 4.6.1.4. Пастеризация в туннель ном пастеризаторе
- 4.6.1.5. Холодно-стерильный розлив пива
- 4.6.2. Коллоидная
- 4.6.2.1. Характер коллоидного помутнения
- 4.6.2.2. Улучшение коллоидной стойкости пива
- 4.6.2.3. Технологические пути улучшения коллоидной стойкости пива
- 4 .6.2.4. Использование стабилизирующих средств
- 4.6.2.4.1. Силикагели
- 4.6.2.4.2. Поливинилполипирролидон (пвпп)
- 4.6.3. Фильтрационная линия
- 4.6.4. Вкусовая стойкость пива
- 4.6.4.1. Карбонилы, вызывающие старение вкуса (карбонилы старения)
- 1Дёлер - 100%-ная концентрация качества!
- 4.6.4.3. Приемы, позволяющие исключить попадание кислорода на пути от лагерного танка до розлива
- 4.6.4.4. Приемы, позволяющие исключить отрицательное изменение вкуса после розлива
- 4.7. Карбонизация пива
- 4.8. Особые способы приготовления пива
- 4.8.1. Высокоплотное пивоварение
- 4.8.2. Изготовление ледяного пива (Eisbier)
- 4.8.3. Методы удаления спирта из пива
- 4.8.3.1. Мембранные методы
- 4.8.3.1.1, Обратный осмос
- 4.8.3.1.2. Диализ
- 4.8.3.2. Термические способы удаления спирта/ дистилляция
- 4.8.8.3. Подавление образования спирта
- 4.9. Техника безопасности в отделениях брожения, дображивания и фильтрования
- 4.9.1. Несчастные случаи из-за углекислоты брожения
- 4.9.2. Техника безопасности при работе с цкт
- 4.9.3. Техника безопасности при работе с кизельгуром
- 5.1.1.2. Изготовление стеклянных бутылок
- 5.1.1.3. Формы бутылок
- 5.1.1.4. Цвет бутылки
- 5.1.1.5. Обработка поверхности бутылки
- 5.1.1.6. Износ (скаффинг)
- 5.1.1.7. Дополнительная защитная обработка бутылок
- 5.1.1.8. Бутылки многоразового использования
- 5.1.1.9. Последовательность технологических операций при использовании стеклянных бутылок многоразового использования
- 5.1.2. Мойка бутылок многоразового использования
- 5.1.2.1. Факторы, влияющие на чистоту бутылок
- 5.1.2.2. Бутылкомоечные машины
- 5.1.2.2.1. Конструкции
- 5.1.2.2.2. Основные
- 5.1.2.3. Моющий щелочной раствор
- 5.1.2.3.1. Требования к моющему щелочному расвору
- 5 .1.2.3.2. Состав моющего
- 5.1.2.3.3. Поддержание
- 5.1.2.3.4. Подготовка моющего щелочного раствора
- 5.1.2.3.5. Расход воды
- 5 .1.2.4. Техническое
- 5.1.4. Наполнение бутылок
- 5.1.4.1. Основные принципы розлива
- 5.1.4.2. Принципиальные конструктивные решения разливочно-укупорочных блоков
- 5.1.4.3. Основные узлы разливочно-укупорочного блока
- 5.1.4.4. Конструкция
- 5.1.4.5. Способ вспрыска воды под высоким давлением
- 5.1.5. Укупоривание бутылок
- 5.1.5.1. Укупоривание бутылок кронен-пробками
- 5.1.5.2. Укупоривание пробкой с пружинным хомутом
- 5.1.6. Промывка
- 5.1.7. Контроль наполненных и укупоренных бутылок
- 5.1.7.1. Контроль уровня наполнения
- 5.1.7.2. Кислород в горлышке бутылки
- 5.1.8. Пастеризация в бутылках
- 5.1.8.1. Обоснование пастеризации в бутылках
- 5.1.8.2. Важнейшие
- 5.1.8.3. Система обеспечения необходимого количества пе
- 5.1.9. Нанесение этикеток и фольги на бутылки
- 5.1.9.2. Этикеточный клей
- 5.1.9.3. Основной принцип нанесения этикеток
- 5.1.9.4. Конструктивные элементы этикетировочного автомата
- 5.1.9.5. Нанесение фольги на головку бутылки
- 5.1.10. Датирование
- 5.2. Особенности розлива в стеклянные одноразовые бутылки
- 5.2.1. Распаковка новых стеклянных бутылок
- 5.2.2. Ополаскивание
- 5.3. Розлив напитков в многоразовые пэт-бутылки
- 5.3.1. Пластиковые бутылки
- 5.3.1.2. Прочие виды
- 5.3.2. Изготовление пэт-бутылок
- 5.3.3. Транспортировка пустых пэт-бутылок
- 5.3.4. Мойка пэт-бутылок многоразового использования
- 5.3.5. Инспектирование
- 5.3.6. Процесс розлива в пэт-бутылки
- 5.3.7. Укупоривание пэт-бутылок
- 5.3.7.1. Алюминиевые колпачки
- 5.3.7.2. Пластмассовые
- 5.3.8. Этикетирование пэт-бутылок
- 5.4. Особенности наполнения одноразовых пэт-бутылок
- 5.5. Розлив пива в банки
- 5.5.1. Банки и их укупоривание
- 5.5.2. Складирование,
- 5.5.3. Инспектирование пустых банок
- 5.5.4. Ополаскивание банок
- 5.5.5. Наполнение банок
- 5.5.5.1. Разливочный автомат с дозированием по уровню
- 5.5.5.2. Разливочный автомат с дозированием по объему
- 5.5.6. Укупоривание банок
- 5.5.7. Мойка блоков розлива и укупоривания банок
- 5.5.8. Виджеты
- 5.5.9. Инспектирование полных банок
- 5.5.10. Пастеризация
- 5.5.11. Круговое
- 5.5.12. Датирование банок
- 5.6. Розлив в бочки, кеги, специальные бочонки и большие жестяные банки
- 5.6.2. Кеги и фитинги
- 5.6.3. Мойка и наполнение кегов
- 5.6.3.2. Наполнение кегов
- 5.6.4. Линия розлива в кеги
- 5.6.5. Розлив в малые
- 5.6.6. Розлив в большие банки
- 5.7. Упаковка
- 5.7.1. Транспортировка бутылок и банок
- 5.7.2. Обработка новых стеклянных бутылок и банок
- 5.7.3. Виды упаковки, транспортировка
- 5.7.3.1. Виды упаковки
- 5.7.3.2. Транспортировка единиц упаковки
- 5.7.3.4. Складирование ящиков
- 5.7.3.5. Мойка ящиков
- 5.7.4. Выемка и укладка
- 5.7.4.1. Захватные головки и захватные патроны
- 5.7.4.2. Виды укладчиков
- 5.7.4.2.1. Укладчик с прерывистым движением
- 5.7.4.2.2. Мультипакер
- 5.7.4.2.3. Круговой укладчик
- 5.7.4.3. Переориентирующие машины для бутылок
- 5.7.4.4. Специальные машины для укладки и сортировки упаковочных единиц
- 5.7.5. Формирование
- 5.7.5.2. Конструкция и принцип действия пакетосборщиков и пакеторазборщиков
- 5.7.5.3. Штабелирование
- 5.7.5.4. Транспортные средства для механизации погрузочно- разгрузочных работ
- 5.7.5.5. Складирование поддонов
- 5.7.5.6. Устройства для подачи и отвода пакетов- поддонов
- 5.8. Комплектная линия розлива
- 5.9. Потери пива
- 5.9.1. Расчет объема товарного пива
- 5.9.2. Снятие остатков и пересчет на товарное пиво
- 5.9.3. Расчет потерь по жидкой фазе
- 5.9.4. Расчет расхода солода в кг на гл пива
- 5.9.5. Оценка потерь и возможности их снижения
- 6. Мойка и дезинфекция
- 6.1. Материалы, используемые для изготовления емкостей и трубопроводов, и их устойчивость по отношению к моющим средствам
- 6.1.1. Емкости из алюминия
- 6.1.2. Емкости и трубопроводы из нержавеющей стали
- 6.1.3. Шланги и уплотнения
- 6.2. Моющие средства
- 6.3. Дезинфицирующие средства
- 6.4. Проведение мойки и дезинфекции в системе cip
- 6.5. Процесс мойки
- 6.6. Механическая мойка
- 6.7. Контроль мойки и дезинфекции
- 6.8. Меры безопасности при проведении мойки и дезинфекции
- 7. Готовое пиво
- 7.1. Химический состав пива
- 7.1.1. Компоненты пива
- 7.1.2. Пиво и здоровье
- 7.2. Органолептические показатели пива
- 7.2.1. Аромат и вкус пива
- 7.2.1.1. Аромат пива
- 7.2.1.2. Полнота вкуса
- 7.2.1.3. Игристость
- 7.2.1.4. Горечь пива
- 7.2.2. Пенистость и
- 7.3. Типы пива и их особенности
- 7.3.1. Пиво верхового брожения
- 7.3.1.1. Особенности
- 7.3.1.2. Пшеничное пиво типа Вайцен
- 7.3.1.3. «Белое» пиво типа Вайсе (Weipe)
- 7.3.1.4. «Старое» пиво типа Альт (Alt)
- 7.3.2. Типы и сорта пива низового брожения
- 7.3.2.1. Пиво типа Пилзнер (Pilsner)
- 7.3.2.3. Пиво типа «Export»
- 7.3.2.4. Пиво типа «Шварц» (Schwarzbiere, Черное пиво)
- 7.3.2.5. Пиво типа Фест (Festbiere, «Праздничное пиво»)
- 7.3.2.6. Пиво Айс (Eisbier, Ледяное пиво)
- 7.3.2.7. Пиво типа
- 7.3.2.8. Пиво типа Бок (Bockbier)
- 7.3.2.9. Пиво Двойной Бок (Doppelbock)
- 7.3.2.10. Безалкогольное пиво
- 7.3.2.11. Диетическое пиво
- 7.3.2.14. Типы пива,
- 7.3.2.15. Смешанные
- 7.3.3. Тенденции развития типов пива, приготовляемых без учета немецкого Закона о чистоте пивоварения
- 7.4. Контроль качества
- 7.4.1. Дегустация пива
- 7.4.2. Микробиологическое исследование
- 7.4.3. Анализ пива
- 7.4.3.2. Определение цветности пива
- 7.4.3.3. Определение величины рН
- 7.4.3.4. Определение содержания кислорода в пиве
- 7.4.3.5. Определение содержания диацетила в пиве
- 7.4.3.6. Определение пеностойкости
- 7.4.3.7. Определение
- 7.4.3.8. Определение
- 7.4.3.9. Определение склонности
- 7.4.3.10. Прочие методы анализа
- 7.5. Лабораторное оборудование и измерительная техника
- 7.5.1. Приборы
- 7.5.2. Расходомеры
- 7.5.3. Измерительные преобразователи уровня
- 7.5.4. Измерительные преобразователи плотности
- 7.5.5. Измерительные преобразователи мутности
- 7.5.6. Приборы для измерения содержания кислорода
- 7.5.7. Измерение величины рН
- 7.5.8. Измерение электрической проводимости
- 7.5.9. Датчики сигнализации предельного уровня
- 7.5.10. Измерение давления
- 8. Малые пивоваренные производства
- 8.1. Барные
- 8.2. Производственный мини-пивзавод
- 8.3. Любительское пивоварение
- 25 Кг ячменя (с 15%-ной влажностью)
- 9. Утилизация отходов и охрана окружающей среды
- 9.1. Законодательство об охране окружающей среды
- 9.2. Сточные воды
- 9.2.1. Расходы
- 9.2.2. Основные понятия, имеющие отношение к сточным водам
- 9.2.3. Очистка сточных вод
- 9.2.3.2. Установки для анаэробной очистки сточных вод
- 9.2.3.3. Объемы и состав
- 9.2.3.4. Очистка стоков с использованием смесительных и распределительных бассейнов
- 9.3. Остатки материалов и отходы
- 9.3.1. Пивная и хмелевая дробина
- 9.3.2. Взвеси
- 9.3.3. Остаточные дрожжи
- 9.3.4. Кизельгуровый шлам
- 9.3.5. Этикетки
- 9.3.6. Бой стекла
- 9.3.7. Банки для пива
- 9.3.8. Небольшие по объемам отходы
- 9.4. Промышленные выбросы
- 9.4.1. Пыль и пылевые выбросы
- 9.4.2. Выбросы из варочного цеха
- 9.4.3. Выбросы продуктов сгорания
- 9.4.4. Шумы
- 10. Энергетическое хозяйство на пивоваренных и солодовенных предприятиях
- 10.1. Потребление энергии
- 10.2. Паровые котельные агрегаты
- 10.2.1. Виды топлива
- 10.2.2.1.Теплота
- 10.2.2.2. Влажный пар
- 10.2.2.3. Перегретый пар
- 10.2.2.4. Горячая вода
- 10.2.3. Паровой котел
- 10.2.3.1. Классификация паровых котлов
- 10.2.3.2. Типы конструкций паровых котлов
- 10.2.3.3. Трехходовой котел
- 10.2.3.4. Рекуперация энергии и повышение кпд
- 10.2.4. Паросиловые установки
- 10.2.5. Блочные
- 10.3. Холодильные установки
- 10.3.1. Хладагенты
- 10.3.1.1. Хладагенты
- 10.3.1.2. Хладоносители
- 10.3.2. Компрессионные холодильные установки
- 10.3.2.1. Принцип действия
- 10.3.2.1. Испарители
- 10.3.2.2. Компрессор
- 10.3.2.3. Конденсаторы
- 10.3.2.4. Регулирующий клапан
- 1, 2, 3, 4 — Впускной, выпускной, спускной и воздушный
- 10.3.2.5. Накопитель ледяной воды (рис. 10.19)
- 10.3.3. Абсорбционная холодильная установка
- 10.3.4. Охлаждение помещений и жидкостей
- 10.3.4.2. Современные
- 10.3.4.3. Охлаждение жидкостей
- 10.3.5. Рекомендации по повышению экономичности эксплуатации холодильной установки
- 10.4. Электроборудование
- 10.4.1. Получение
- 1 0.4.2. Коэффициент мощности cos φ
- 10.4.3. Преобразование (трансформация) электрического тока
- 1 0.4.4. Меры безопасности
- 10.4.5. Рекомендации по экономичному расходу электроэнергии
- 10.5. Насосы,
- 10.5.1. Насосы
- 10.5.1.1. Лопастные насосы
- 10.5.1.1.2. Вихревые насосы
- 10.5.1.2. Объемные насосы
- 10.5.1.2.1.1. Эксцентриковый винтовой насос
- 10.5.1.2.2. Объемные насосы
- 10.5.1.3. Расчет параметров насосов
- 1 0.5.1.4. Регулирование числа оборотов насосов
- 10.5.2. Вентиляторы
- 10.5.2.1. Осевые вентиляторы
- 10.5.2.2. Центробежные вентиляторы
- 10.5.3. Компрессорные установки для сжатого воздуха
- 10.5.3.1.4. Винтовые
- 10.5.3.1.5. Турбокомпрессоры
- 10.5.3.2. Осушители воздуха
- 10.5.3.4. Трубопроводы высокого давления
- 10.5.3.5. Воздушные фильтры
- 11. От автоматизации —
- X. О. Мит (н. О. Mieth), г. Гамбург
- 11.1. История развития и технические предпосылки автоматизации пивоваренного производства — высокие технологии в повседневной жизни
- 11.1.1. Устойчивые к коррозии и совместимые с пищевыми продуктами материалы
- 11.1.2. Автоматическая мойка и дезинфекция cip (Cleaning In Place)
- 11.1.3. Оборудование, отвечающие требованиям автоматизации и безразборной мойки (cip)
- 11.1.4. Технология пивоварения, отвечающая задачам автоматизации
- 11.1.5. Системы
- 11.1.6. Интеграция технологического процесса — «ноу-хау»
- 11.1.7. Искусственный интеллект и киПиА
- 11.1.8. Роль пивовара в автоматизации пивоваренного производства
- 11.2. Обозначения и системный подход к проектированию систем автоматизации пивоварения в соответствии с общими нормативами обозначения технологических процессов
- 11.2.1. Введение в принципы обозначения процессов и аппаратов
- 11.2.1.1. Стандартизированные обозначения типовых аппаратов и основных операций
- 11.2.1.2. Символы для обозначения специальных аппаратов с учетом
- 11.2.1.3. Стандарты din по технологии производства, имеющие значение для автоматизации
- 11.2.1.4. Необходимость действий
- 11.2.2. Основы
- 11.2.2.1. Этап проектирования 1: базовая схема технологического процесса или «блок- схема»
- 11.2.2.2. Этап проектирования 2: принципиальная технологическая схема процесса
- 835 Рис. 11.3. Блок-схема технологического процесса: маршрут сусла
- 11.2.2.3. Этап проектирования 3: формулировка задания на киПиА в соответствии с принципиальной схемой технологического процесса
- 11.2.2.4. Этап проектирования 4: словесное описание процесса к технологической схеме
- 11.2.2.5. Этап проектирования 5: функциональная схема трубопроводов и арматуры
- 11.2.2.6. Этап проектирования 6: функциональный план в соответствии с din 40 719 и iec 848
- 11.3. КиПиА согласно din и в практике автоматизации пивоваренного предприятия
- 11.3.1. К вопросу
- 11.3.1.1. Последствия
- 11.3.1.2. Полезность
- 11.3.2. Основы аппаратного обеспечения (ао) автоматизации пивоваренного производства. Функции ао
- 11.3.2.1. Система управления производственным процессом
- 11.3.2.2.1.2. Входы двоичных сигналов от датчиков предельных значений.Технические особенности коммутирования
- 11.3.2.2.2. Аналоговые сигналы
- 11.3.2.2.3. Аналогово-цифровые гибридные схемы
- 11.4. Задачи и средства интеграции технологических процессов
- 11.4.1. Задачи, стоящие
- 11.4.1.1. Шаг проектирования 5.1: определение производительности оборудования и гибкости процесса при составлении плана производства
- 11.4.1.2. Подэтап проектирования 5.2: составление диаграммы занятости
- 11.4.1.3. Подэтап проектирования 5.3: составление функциональной схемы
- 11.4.1.4. Методы интеграции стандартизированных производственных линий в проекте автоматизации пивоваренного предприятия
- 11.4.1.4.2. Вся производственная линия «в одних руках»
- 11.4.2. Системы и компоненты трубопроводов, обеспечивающие несмешиваемость сред и отвечающие требованиям безразборной мойки cip
- 11.4.2.1. Трубное соединение
- 11.4.2.2. Измерительные
- 11.4.2.3. Исполнительные органы
- 11.4.2.3.3. Поворотные заслонки (типа «бабочка»)
- 11.4.2.4. Необходимость стандартизации систем трубопроводов в автоматизированных установках для пищевых продуктов
- 11.4.3. Концепции надежности разделения сред
- 11.4.3.1. Системы жесткой трубной обвязки с перекидными калачами
- 11.4.3.2. Системы жесткой
- 11.4.3.3. Системы жесткой трубной обвязки с двухседельными клапанами
- Isbn 5-93913-006-2