3.4.2.3.1. Кипячение при низком избыточном давлении с выносным кипятильником
У сусловарочных котлов с выносным кипячением сусло циркулирует через кипятильник, расположенный вне котла, оборачиваясь при этом 7-8 раз в час. При этом сусло постоянно отбирается из нижней части сусловарочного котла и перекачивается насосом через выносный кипятильник (рис. 3.70, 1).
В качестве выносного кипятильника применяется чаще всего кожухотрубный теплообменник, реже — пластинчатый теплообменник. Через трубы пропускают сусло, с наружной стороны труб противотоком движется пар. Когда сусло нагревается, то пар охлаждается и конденсируется. Выносной кипятильник устанавливают вертикально или горизонтально, в последнем случае его устанавливают с легким наклоном для лучшего стекания конденсата. Оба варианта получили распространение на практике.
Размеры наружного кипятильника определены требуемой поверхностью нагрева. Эта
297
1 — выносной кипятильник; 2 — сусловарочный котел; 3 — конденсатор вторичного пара; 4 — сборник сусла; 5 — теплообменник для нагрева сусла; 6 — вирпул; 7 — пар; 8 — конденсат; 9 — насос; Wort Density Measuring — измерение
плотности сусла
поверхность зависит от числа нагревательных труб, их диаметра и длины.
Если скорость движения сусла в трубах слишком мала, появляется опасность приго-рания или как минимум карамелизации сусла, а значит сильного повышения его цветности. Кроме того, следует опасаться, что из-за высокой температуры коагулируемый белок осядет в трубах. Чтобы этого избежать, в настоящее время считают, что скорость течения сусла в трубах кипятильника должна составлять как минимум 2,6-3,0 м/с. Чтобы достигнуть равномерности теплообменного процесса, предусматривается достаточная длина пути для прохождения каждой частицы объема сусла. Но так как длина кипятильника ограничена его габаритными размерами, то часто концы горизонтальных труб, выведенные на торцевую плиту, соединяют изогнутыми поворотными трубами, так что каждая частица объема сусла проходит теплообменник многократно (рис. 3.71). В любом случае места поворотов приводят к появлению касательных напряжений, воздействующих на сусло.
Для проведения процесса кипячения сусла имеются два варианта:
весь котел находится под небольшим из быточным давлением, вторичный пар от водится через перепускной клапан; пре имуществом этого варианта является по вышенная температура вторичного пара;
сусло в котле кипятится без давления, вторичный пар также отводится без избы точного давления, но внутри выносного кипятильника сусло кипит при повышен ном давлении, соответствующем темпера туре кипения 102-104 °С.
Требуемое для повышенной температуры кипения избыточное давление (80-200 миллибар) достигается с помощью:
баростатического клапана (клапана для сброса давления), устанавливаемого перед впуском сусла в котел;
повышения числа оборотов насоса.
Разница между температурой пара и температурой сусла не должна превышать при
298
Рис. 3.71. Выносной кипятильник:
1 — вход сусла; 2 — выход сусла; 3 — трубы для прохождения сусла; 4 — торцевые плиты; 5 — вход пара; 6 — выход конденсата
этом 10 градусов. Требуемая площадь поверхности теплопередачи составляет 10-11 м2 на 100 гл готового сусла.
При условии достаточной скорости протекания и небольшой разнице температур между паром и суслом рабочий цикл теплообменника достигает 30-40 варок. После этого требуется мойка. Если параметры плохо согласованы, то может потребоваться мойка уже через 6-8 варок.
При обратном попадании сусла в котел давление в сусле падает. При этом происхо-
дит желательное интенсивное испарение. Для этого сусло возвращают через отражатель в форме конуса или через распределительное устройство, подводящее сусло на уровне поверхности сусла в котле.
Циркуляционный насос подбирают так, чтобы все содержимое котла могло пройти через кипятильник приблизительно 8 раз в час. Однако этим не гарантируется, что каждая частица объема сусла пройдет именно 8 раз через кипятильник — ведь содержимое котла перемешивается принудительно.
Выносное кипячение, предусматривавшееся сначала лишь как вспомогательное мероприятие для улучшения работы сусловароч-пого котла, у которого эффективность кипячения была недостаточной, в настоящее время является хорошо зарекомендовавшим себя способом кипячения сусла. Этот способ имеет ряд преимуществ перед внутренним кипячением (которое в настоящее время также претерпело усовершенствования):
циркулирующий объем сусла допускает точную регулировку и может быть легко приспособлен к объему сусловарочного котла;
температура сусла на выходе из выносно го кипятильника может точно устанавли ваться;
имеется возможность использования стро го контролируемого выдерживания сусла при повышенных температурах с помощью дополнительного буферного танка;
возможно использование для обогрева пре дельно низкого избыточного давления на сыщенного пара (Ризб. = 0,3 бар);
можно устанавливать любую нужную ве личину поверхности теплообмена.
Однако нельзя упускать также недостатки выносного кипятильника, заключающиеся в следующем:
требуются более высокие инвестиционные затраты при приобретении оборудования (трубопроводы, теплообменник, циркуля ционный насос), а также следует произве сти изоляцию этого дополнительного обо рудования;
принудительная циркуляция требует до полнительной электроэнергии для пере качки сусла;
при высоких скоростях потока сусла воз никают касательные напряжения;
299
■ потребность в площадях для установки оборудования больше, соответственно вы ше и стоимость монтажа оборудования.
Несмотря на недостатки, выносное кипячение успешно применяется на многих пивоваренных предприятиях.
3.4.2.3.2. Кипячение при низком избыточном давлении с использованием внутреннего кипятильника
Современные сусловарочные котлы теперь очень часто оснащаются внутренним кипятильником (перколятором) (рис. 3.72).
Внутренний кипятильник представляет собой кожухотрубный теплообменник, расположенный в сусловарочном котле. Через вертикальные трубы (1) кипятильника поднимается сусло, нагреваемое паром, подводимым сверху в межтрубное пространство. При этом пар (6) охлаждается и конденсируется (7).
В сужающемся конусе (5) кипящее сусло ускоряется и, поднимаясь над уровнем поверхности сусла в котле, распределяется по этой поверхности широким веером с помощью распределительного экрана (4), что способствует хорошему испарению и в то же время обеспечивает постоянство уровня сусла в котле.
Так как температура сусла при кипении повышается до 103-106°С, то температура (а вместе с ней и давление) горячего пара должна быть существенно выше. Она составляет:
при нагреве — около 140-145 °С (= 3,8-4,3 бар, см. раздел 10.2.2.1) и
при кипении — около 130 °С (= 2,8 бар).
В нагревательных трубах кипятильника сусло движется снизу с температурой ниже 100 °С и по мере подъема оно нагревается (рис. 3.72а).
При этом очень скоро [174] на внутренней стенке труб образуется:
зона начала образования пузырьков пара (2), которая при дальнейшем подъеме пе реходит
в зону неполного парообразования (3) и наконец в более широкой зоне
происходит парообразование во всем объе ме сусла (4), тогда как снаружи пар отдает свою энергию парообразования (энталь пию) и конденсируется; слой конденсата,
Рис. 3.72. Устройство внутреннего кипятильника:
1 — пучок труб; 2 — впуск сусла; 3 — кожух; 4 — отражающий экран для распределения сусла; 5 —сужающийся конус; 6 — подача пара; 7 — отвод конденсата; 8 — моющая головка
стекающего вниз, становится все более толстым, все в большей степени препятствуя теплопередаче.
При парообразовании во всем объеме кипящего сусла большая часть воды переходит в пар, который занимает значительно больший объем, чем вода, из которой он образовался. Это сусло с увеличившимся объемом попадает в сужающийся конус, расположенный
300
над нагревательными трубами, поднимается над уровнем сусла в котле и затем распределяется по поверхности сусла с помощью распределительного экрана. Этот экран, который может иметь различную конструкцию, устанавливается так, чтобы обеспечить полную циркуляцию сусла в котле, без образования мертвых зон.
Очень высокая разность температур способствует хорошему кипению, но создает и проблемы: в то время, как у выносного кипятильника гарантируется постоянная циркуляция всего содержимого котла, у внутреннего кипятильника возникают неравномерности в его работе, особенно заметно проявляющиеся на стадии нагрева.
■ При нагреве сусло втягивается в трубы кипятильника из самых нижних слоев котла и после нагрева в кипятильнике оно
распределяется на поверхности сусла. Из-за этого в котле возникает расслоение сусла с температурным перепадом до 20 градусов, которое выравнивается лишь через 15-20 мин [190] (рис. 3.72б). Из-за этого имеет место неравномерная обработка сусла, включая неравномерную изомеризацию горьких веществ и неравномерное испарение ДМС.
При нагреве сусла до температуры кипе ния еще очень велика разность температур между паром и выходящим суслом. Из-за этого в данной области происходит снача ла карамелизация и затем пригорание.
Более холодное сусло постоянно поступа ет в кипятильник снизу, и выходит вверху лишь тогда, когда оно начинает кипеть. Но при парообразовании объем жидкости су щественно увеличивается. Из-за этого объемный расход сусла временно тормо зится, и возникает сильная пульсация за кипающего сусла в ходе его нагрева до тем пературы кипения.
Из одного кг (= 1 л) воды получается при испарении около 1700 л водяного пара той же температуры. Это неизбежно вызывает в трубах кипятильника значительное гидродинамическое сопротивление и пульсацию, так как кипящее сусло и образующийся пар не могут так быстро уходить вверх. Это гидродинамическое сопротивление тем больше, чем уже условный проход труб кипятильника.
Рис. 3.72а. Образование пара в нагревательных трубах внутреннего кипятильника:
1 — горячее сусло; 2 — зона начала образования пузырьков пара; 3 — зона неполного парообразования; 4 — парообразование во всем объеме сусла
Рис. 3.72б. Неравномерность температур при нагреве:
Точки измерения: 1 — под поверхностью сусла; 2 — в верхней трети уровня сусла; 3 — в нижней трети уровня сусла; 4 — над дном котла
Чтобы иметь возможность бороться с этими проблемами, были предложены, особенно в последнее время, некоторые мероприятия. К ним относятся:
применение циркуляционного насоса, что бы путем принудительной циркуляции быстрее достигнуть равномерной темпера туры сусла во всем котле, для чего можно использовать насос для выгрузки горяче го охмеленного сусла, который должен иметь частотное регулирование и конст рукцию, обеспечивающую бережную пере качку сусла и
исключать во время нагрева сусла возник новение температурного расслоения сус ла внутри котла, а также
поддерживать во время кипения естествен ную циркуляцию.
К этому также относится:
оптимизация стадий процесса кипячения («ароматическое кипячение») путем гиб кого управления объемным расходом цир кулирующего сусла, а также температурой и давлением пара;
применение распределительного экрана для сусла с целью обеспечения максималь ного испарения.
При оптимизированном по стадиям процесса ароматическом кипячении (система кипячения «Экотерм» (Ecotherm) [173], фирма Steinecker, г. Фрайзинг) путем использования системы управления добиваются того, чтобы для каждого момента нагрева и кипения можно было предварительно выбрать свою температуру теплоносителя и объемный расход циркулирующего сусла и установить желаемые величины для готового сусла в узких пределах. Тем самым возможно путем быстрого или замедленного нагрева и дифференцирования стадий процесса кипячения менять характер отдельных типов пива, влияя на расщепление предшественника ДМС и образуя ароматические вещества при кипячении за счет изменения температуры теплоносителя.
В соответствии с этим процесс кипячения продолжительностью 70 мин делится на 3 стадии [193]:
■ 20 мин, благодаря высокой интенсивности нагрева быстро переходит в нерастворимое состояние легко коагулируемый азот;
301
30 мин, при более низкой интенсивности нагрева продолжается расщепление пред шественника ДМС при постоянной тем пературе в котле (99 °С) и экономится теп ловая энергия;
20 мин, повышается интенсивность нагре ва с целью корректировки содержания азо тистых веществ путем форсирования про цесса выпадения белков.
Применение отражающего экрана для
распределения сусла служит в первую очередь удалению ароматических компонентов, улетучивающихся вместе с водяным паром, в особенности расщеплению предшественника ДМС и удалению свободного ДМС. Конструкция распределительного экрана приобретает здесь большое значение.
Двойной экран (тип Steinecker)
У нового двойного экрана (рис. 3.72в) при более низкой температуре теплоносителя (около 130 °С) (а, правая сторона) сусло сжимает-
Рис. 3.72в. Двойной экран (тип Steinecker, г. Фрайзинг):
1 — сужающийся конус; 2 — наружная выпускная труба кипятильника; 3 — внутренняя выпускная труба кипятильника; 4 — нижний экран; 5 — верхний экран; а — кипение при низкой температуре теплоносителя; b — максимальная интенсивность нагрева
302
ся прежде всего у нижнего экрана (4) и с помощью плавного поворота направляется во внешнюю треть котла, чем обеспечивается хорошее испарение, тогда как от верхнего экрана (5) истекает лишь небольшая часть сусла с меньшей скоростью. Эта стадия процесса обеспечивает главным образом испарение нежелательных ароматических веществ.
При максимальной интенсивности нагрева (температура теплоносителя около 145 °С) (b, левая сторона) кипящее сусло сжимается и направляется через оба экрана, выходя как из внутренней (3), так и из наружной выпускной трубы (2). При этом более плоский нижний зонтик экрана мешает верхнему зонтику отбрасывать сусло к стенке котла, что привело бы к нежелательному воздействию касательных напряжений на сусло.
Двухфазный экран (тип Huppmann)
Двухфазный экран (рис. 3.72г) разделен на сегменты в двух плоскостях.
Благодаря плавному повороту в рассекателе экрана поток кипящего сусла разделяется на сегменты и разбрызгивается в двух плоскостях, расположенных друг над другом, вследствие чего достигается очень хороший эффект испарения. Одновременно сусло получает небольшое закручивание благодаря соответствующей форме сегментов экрана. Видимая на рисунке вверху резьба показывает, что экран можно переставлять по высоте, что делается у всех экранов, так как необходимо устанавливать оптимальную высоту.
Длительность процесса и давление при кипячении
В настоящее время процесс кипячения сусла продолжается, как правило, 60-70 мин и при «классическом» кипячении с низким избыточным давлением он протекает следующим образом (рис. 3.73):
нагрев до 100 °С приблизительно за 15 мин;
предварительное кипячение при 100 ° С около 10 мин;
нагрев до 102—104 °С за 10—15 мин;
кипячение под давлением при 102—104 °С около 15—30 мин;
сброс давления и понижение температуры до 100 ° С приблизительно за 15 мин;
последующее кипячение при 100 °С около 10 мин.
Динамическое кипячение
при низком избыточном давлении
(фирма Huppman, г. Китцинген)
При динамическом кипячении с низким избыточным давлением нет длительной стадии выдерживания при избыточном давлении, а постоянно производится поочередное повышение и сброс давления (рис. 3.72д).
Обычно начинают с 10-15-минутной стадии предварительного кипячения, которая должна служить главным образом для коагуляции белка и изомеризации хмелевых смол. В конце этой стадии клапан вытяжной трубы для вторичного пара закрывается и давление в котле поднимается на 300-350 мбар. Температура повышается до 104-105 ° С и поддерживается в течение 3-5 мин.
Затем давление снижается до 100-150 мбар, а температура соответственно понижается до 101-102 °С. Чтобы ускорить сниже-
Рис. 3.72г. Двухфазный экран (тип Huppmann, г. Китцинген, описание в тексте)
Рис. 3.72д. Динамическое кипячение при низком избыточном давлении (описание в тексте)
303
ние давлеaния, подвод свежего пара перекрывается и водяной регулирующий контур накопителя тепловой энергии (см. гл. 3.4.2.5.3) включается на полную мощность. После стадии сброса давления продолжительностью 3-5 мин вновь открывают подачу пара и весь процесс повторяется. Можно производить последовательно друг за другом до 6 таких повышений и сбросов давления.
Частое повторение сбросов давления обеспечивает существенное повышение интенсивности и глубины испарения летучих веществ сусла [151]. Более интенсивное кипячение приводит к большей термической нагрузке на сусло, которое однако в этом случае не влияет на старение пива.
В качестве преимуществ внутреннего кипятильника можно назвать:
■ простую и надежную конструкцию в соче тании с большим сроком эксплуатации;
■ не требуется дополнительной электроэнергии, поскольку нет принудительной перекачки;
беспроблемное применение безразборной мойки (CIP);
отсутствие необходимости в изоляции ки пятильника;
отсутствие необходимости в дополнитель ных площадях.
В качестве недостатков следует отметить следующие:
при нагреве до температуры кипения воз никает стадия нестабильной работы, ко торая воздействует неблагоприятно на со став сусла; этот существенный недоста ток можно устранить только используя перекачку насосом (см. выше);
трубы внутреннего кипятильника быстрее загрязняются из-за высоких температур при нагреве сусла и из-за более низкой ско рости течения в данный момент времени;
конструктивно возможная площадь выбо ра поверхности нагрева ограничена опреде ленными пространственными пределами.
Решение о выборе между внутренним и выносным кипятильниками является в основном вопросом философии пивоваренной компании, так как существенной разницы между этими двумя системами нет.
Для устранения стадии нестабильности, кроме описанной выше системы принудительной циркуляции с помощью насоса имеется еще возможность обогревать сусло с помощью внутреннего трубного перколятора, работающего в комбинации с мешалкой (рис. 3.73).
Обогреватель такой конструкции иногда используется для заторных емкостей с целью
304
Рис. 3.73. Внутренний трубный перколятор с мешалкой (ВТЕ Brauerei-Technik, г. Эссен)
обеспечения щадящего перемешивания затора при высокой интенсивности нагрева.
Комбинированные котлы-вирпулы
Если дно сусловарочного котла сделано плоским, то его можно использовать также в качестве вирпула (котел-вирпул). Для таких кот-
лов лучше подходят выносные кипятильники, так как для работы вирпула нежелательно наличие встроенных деталей. При использовании таких котлов с внутренним кипятильником следует учитывать, что от кипятильника возникнут существенные помехи для кругового вращения сусла (см. раздел 3.8.3), что может привести к плохому отделению взвесей горячего сусла.
- Глава 11 написана г. О. Митом, г. Гамбург
- Сырье 37
- Визуальное и ручное обследование 180
- 2.10. Техника безопасности в солодовенном предприятии (цехе) 192
- Кипячение сусла 312
- 3 .9.3. Аэрация сусла 347
- Управление и контроль за технологическими процессами производства сусла 351
- Техника безопасности при производстве сусла 353
- 4.2. Разведение чистой культуры дрожжей 380
- Комплектная линия розлива 656
- 6.1. Материалы, используемые для изготовления емкостей и трубопроводов, и их устойчивость по отношению
- Проведение мойки и дезинфекции в системе cip 685
- 11. От автоматизации - к интеграции технологических
- 11.2. Обозначения и системный подход к проектированию систем автоматизации пивоварения в соответствии с общими
- 11.3. КиПиА согласно din и в практике автоматизации
- 25 Балтика
- 0. Пиво — древнейший народный напиток
- 1. Сырье
- 1.1. Ячмень
- 1.1.1. Группы и сорта ячменя
- 1.1.1.1. Группы ячменя
- 1.1.1.2. Сорта ячменя
- 1.1.2. Возделывание ячменя
- 1.1.3. Строение
- 1.1.3.1. Наружное строение
- 1.1.3.2. Внутреннее строение
- 1.1.4. Состав и свойства отдельных частей ячменя
- 1.1.4.1.2. Сахар
- 1.1.4.1. Углеводы
- 1.1.4.2. Белковые вещества
- 1.1.4.2.2. Продукты
- 1.1.4.3. Жиры (липиды)
- 1.1.4.4. Минеральные вещества
- 1.1.4.5. Прочие вещества
- 1.1.5. Оценка качества ячменя
- 1.1.5.1. Визуальное и ручное обследование
- 1.1.5.2. Технохимический анализ
- 1.1.5.2.2. Масса 1000 зерен
- 1.1.5.2.3. Масса гектолитра
- 1.1.5.2.4. Проба на срез
- 1.1.5.2.5. Технохимический анализ
- 1.1.5.3. Физиологические исследования
- 1.1.5.3.1. Прорастаемость
- 1.1.5.3.2. Энергия и способность прорастания
- 1 .2. Хмель
- 1.2.1. Области возделывания хмеля
- 1.2.2. Сбор, сушка и предохранение хмеля от порчи
- 1.2.2.1. Сбор хмеля
- 1.2.2.2. Сушка хмеля
- 1.2.2.3. Стабилизирующая обработка
- 1.2.3. Строение хмелевой шишки
- 1.2.4. Состав и свойства компонентов хмеля
- 1.2.4.1. Горькие вещества или хмелевые смолы
- 1.2.4.2. Хмелевое эфирное масло
- 1.2.4.3. Дубильные вещества (полифенолы)
- 1.2.4.4. Белковые вещества
- 1.2.5. Оценка качества хмеля
- 1.2.5.1. Ручная оценка качества хмеля в шишках
- 1.2.5.2. Содержание в хмеле горьких веществ
- 1.2.6. Сорта хмеля
- 1.2.7. Хмелепродукты
- 1.2.7.1. Гранулированный хмель
- 1.2.7.2. Экстракты хмеля
- 1.3. Вода
- 1.3.1. Круговорот воды
- 1.3.2. Потребление воды в пивоваренном производстве
- 1.3.3. Забор воды
- 1.3.3.1. Забор подземных вод
- 1.3.3.2. Забор поверхностных вод
- 1.3.3.3. Значение собственного водоснабженния
- 1.3.4. Требования к воде
- 1.3.4.1. Требования к питьевой воде
- 1.3.4.2. Требования к воде для пивоварения
- 1.3.5. Способы улучшения состава воды
- 1.3.5.1. Способы удаления взвешенных частиц
- 1.3.5.2. Удаление растворенных в воде веществ
- 1.3.5.3. Способы улучшения
- 1.3.5.3.1. Декарбонизация
- 1.3.5.4. Обеззараживание воды
- 1.3.5.4.1. Обеззараживание фильтрованием
- 1.3.5.4.2. Обеззараживание ультрафиолетом
- 1.3.5.4.3. Обеззараживание озоном
- 1.3.5.4.4. Обеззараживание
- 1.3.5.4.5. Обеззараживание двуокисью хлора
- 1.3.5.4.6. Обеззараживание ионами серебра
- 1.3.5.5. Способы деаэрации воды
- 1.4. Дрожжи
- 1.4.1. Строение и состав дрожжевой клетки
- 1.4.2. Обмен веществ дрожжевой клетки
- 1.4.3. Размножение и рост дрожжей
- 1.4.4. Характеристики
- 1.4.4.1. Морфологические признаки
- 1.4.4.2. Физиологические различия
- 1.4.4.3. Технологические различия при сбраживании
- 1.4.4.4. Систематическая классификация
- 1.5. Несоложеное сырье
- 1.5.1. Кукуруза
- 1.5.3. Ячмень
- 1.5.4. Сорго
- 1.5.5. Пшеница
- 1.5.6. Сахарный колер
- 1.5.7. Сахар
- 105 Балтика
- 2. Производство солода
- 2.1. Приемка, очистка, сортирование и транспортирование ячменя
- 2.1.1. Приемка ячменя
- 2.1.1.1. Приемка ячменя с рельсового или автомобильного транспорта
- 2.1.1.2. Приемка ячменя
- 2.1.2. Очистка
- 2.1.2.1. Предварительная очистка ячменя
- 2.1.2.2. Магнитные сепараторы
- 2.1.2.3. Камнеотборник
- 2.1.2.4. Обоечная машина
- 2.1.2.5. Триер
- 2.1.2.6. Сортирование ячменя
- 2.1.2.6.1. Основа
- 2.1.2.6.2. Сортировочный цилиндр
- 2.1.2.6.3. Планзихтер
- 2.1.3. Транспортирование ячменя и солода
- 2.1.3.1. Механические
- 2.1.3.1.1. Нория или элеватор
- 2.1.3.1.2. Шнековый транспортер
- 2.1.3.1.3. Скребковый цепной транспортер
- 2.1.3.1.4. Ленточный транспортер
- 2.1.3.2. Пневматические
- 2.1.3.2.1. Всасывающая
- 2.1.3.2.2. Нагнетательная
- 2.1.4.1. Циклоны
- 2.1.4.2. Пылеотделительный фильтр
- 2.1.4.2.1. Пылеотделительный фильтр старой конструкции
- 2.1.4.2.2. Пылеотделительный фильтр новой конструкции
- 2.1.4.2.2.1. Рукавный фильтр
- 2.1.4.2.2.2. Прочие
- 2.2. Сушка и хранение ячменя
- 2.2.1. Дыхание ячменя
- 2.2.2. Сушка ячменя
- 2.2.3. Охлаждение ячменя
- 2.2.4. Хранение ячменя
- 2.2.4.1. Хранение в силосах
- 2.2.4.2. Хранение на складах
- 2.2.4.3. Заражение вредителями
- 2.2.4.3.1. Насекомые-вредители
- 2.2.4.3.2. Плесени
- 2.3. Замачивание ячменя
- 2.3.1. Процессы, происходящие при замачивании
- 2.3.1.1. Водопоглощение
- 2.3.1.2. Снабжение кислородом
- 2.3.1.3. Очистка
- 2.3.2. Замочные чаны
- 2.3.3. Проведение замачивания
- 2.4. Проращивание ячменя
- 2.4.1. Процессы, происходящие при проращивании
- 2.4.1.1. Процессы роста
- 2.4.1.2. Образование ферментов
- 2.4.1.2.1. Ферменты,
- 2.4.1.2.2. Прочие группы ферментов
- 2.4.1.3. Превращения веществ при проращивании
- 2.4.1.3.1. Растворение и расщепление β-глюкана
- 2.4.1.3.2. Расщепление крахмала
- 2.4.1.3.3. Расщепление белковых веществ
- 2.4.1.3.4. Расщепление жиров (липидов)
- 2.4.1.3.5. Образование
- 2.4.1.3.6. Регуляторы прорастания
- 2.4.2. Способы проращивания
- 2.4.2.1. Токовая солодовня
- 2.4.2.2. Системы
- 2.4.2.2.1. Кондиционирование аэрационного воздуха
- 2.4.2.2.2. Солодовня барабанного типа
- 2.4.2.2.3. Солодовня ящичного типа
- 2.4.2.2.3.1. Прямоугольные
- 158 Рис. 2.52. Принцип работы башенной солодовни:
- 2.4.2.2.4. Системы с ежесуточным перемещением
- 2.4.2.3. Контроль
- 2.5. Сушка солода
- 2.5.1. Изменения, происходящие при сушке
- 2.5.1.1. Понижение влажности
- 2.5.1.2. Прерывание процессов прорастания и растворения
- 2.5.1.3. Образование красящих и ароматических веществ (реакции Майяра)
- 2.5.1.4. Образование дмс при сушке
- 2.5.1.5. Образование нитрозаминов
- 2.5.1.6. Инактивация ферментов
- 2.5.2. Устройство сушилок
- 2.5.2.1. Отопление и вентиляция сушилки
- 2.5.2.2. Двухъярусные сушилки (старая конструкция)
- 2.5.2.3. Сушилки
- 2.5.2.4. Высокопроизводительные сушилки с погрузочно-разгрузочными устройствами
- 2.5.2.5. Вертикальные сушилки
- 2.5.3. Процесс сушки
- 2.5.3.1. Производство светлого солода (пильзенского типа)
- 2.5.3.2. Производство темного солода (мюнхенского типа)
- 2.5.3.3. Выгрузка солода из сушилки
- 2.5.3.4. Контроль за процессом сушки
- 2.6. Обработка солода после сушки
- 2.6.1. Охлаждение
- 2.6.2. Очистка солода
- 2.6.3. Хранение солода
- 2.6.4. Полировка солода
- 2.7. Выход солода в производстве
- 2.8.2.5. Стекловидность
- 2.8.2.6. Рыхлость
- 2.8.2.7. Длина зародышевого листка
- 2.8.2.8. Всхожесть
- 2.8.2.9. Плотность
- 2.8.2.10. Метод окрашивания среза зерна (модификация Carlsberg)
- 2.8.3. Технохимический контроль
- 2.8.3.1. Влажность
- 2.8.3.2. Конгрессный способ затирания
- 2.8.4. Договор на поставку солода
- 2.9. Специальные типы солода и солод из прочих зерновых
- 2.9.1. Светлый солод пильзенского типа
- 2.9.2. Темный солод (мюнхенский тип)
- 2.9.3. Темный солод венского типа
- 2.9.4. Карамельный солод
- 2.9.5. Томленый солод
- 2.9.6. Жженый солод
- 2.9.7. Кислый солод
- 2.9.8. Солод короткого ращения
- 2.9.9. Пшеничный солод
- 2.9.10. Солод из прочих хлебных злаков
- 2.9.11. Солод из сорго
- 2.9.12. Красящее пиво
- 2.9.13. Применение
- 2.10. Техника безопасности в солодовенном предприятии (цехе)
- 3. Производство сусла
- 3.1. Дробление солода
- 3.1.1. Подработка солода
- 3.1.1.1. Удаление из солода пыли и камней
- 3.1.1.2. Взвешивание засыпи
- 3.1.1.2.1. Весы с опрокидывающимся ковшом
- 3.1.1.2.2. Весы с открывающимся днищем
- 3.1.2. Основы дробления
- 3.1.3. Сухое дробление
- 3.1.3.1. Шестивальцовые дробилки
- 206 Рис. 3.7. Шестивальцовая
- 3.1.3.2. Пятивальцовые дробилки
- 3.1.3.3. Четырехвальцовые дробилки
- 3.1.3.4. Двухвальцовые дробилки
- 3.1.3.5. Вальцы дробилки
- 3.1.3.6. Кондиционированное сухое дробление
- 3.1.3.7. Бункер для дробленых зернопродуктов
- 3.1.3.8. Молотковые дробилки
- 3.1.4. Мокрое дробление
- Откачка замочной воды.
- 3.1.5. Замочное
- 3.1.6. Оценка качества помола
- 3.2. Затирание
- 3.2.1. Превращения веществ при затирании
- 3.2.1.1. Цель затирания
- 3.2.1.2. Свойства ферментов
- 3.2.1.3. Расщепление крахмала
- 3.2.1.3.1. Влияние температуры
- 3.2.1.3.2. Влияние длительности
- 3.2.1.3.3. Влияние величины рН
- 3.2.1.3.4. Влияние концентрации затора на расщепление крахмала
- 3.2.1.3.5. Контроль расщепления крахмала
- 3.2.1.4. Расщепление β-глюкана
- 3.2.1.5. Расщепление белковых веществ
- 3.2.1.6. Превращения жиров (липидов)
- 3.2.1.8. Биологическое подкисление
- 3.2.1.8.1. Добавление неорганических кислот
- 3 .2.1.9. Состав экстрактивных веществ сусла
- 3.2,1.10. Заключительные рекомендации по проведению затирания
- 3.2.2. Заторные аппараты
- 3.2.3. Начало затирания
- 3.2.3.1. Гидромодуль затора
- 3.2.3.2. Температура начала затирания
- 3.2.4. Способы затирания
- 3.2.4.1. Различные точки
- 3.2.4.2. Настойные способы
- 3.2.4.3. Отварочные способы затирания
- 3.2.4.3.1. Одноотварочные способы
- 3.2.4.3.2. Двухотварочные способы
- 3.2.4.3.3. Трехотварочные способы
- 3.2.4.2.4. Специальные способы затирания
- 3.2.4.3.5. Способы затирания
- 3.2.5. Продолжительность затирания
- 3.2.6. Контроль затирания
- 3.3. Фильтрование затора
- 3.3.1. Первое сусло
- 3.3.2. Последняя промывная вода
- 3.3.3. Фильтрационный чан
- 3.3.3.1. Фильтрчан старой конструкции (рис. 3.46)
- 3.3.3.2. Фильтрационные чаны новой конструкции (рис. 3.48 и 3.48а)
- 3.3.3.3. Последовательность операций при работе на фильтрчане
- 3.3.4. Фильтрование
- 3.3.4.1. Фильтр-пресс старой конструкции
- 3.3.4.2.2.Последовательность операций при работе на фильтр-прессе 2001 (рис. 3.61а)
- 2. Фильтрование
- 3. Первое сжатие
- 4. Промывка дробины
- 5. Последнее сжатие
- 3.3.4.2.3.Прочие современные фильтр-прессы
- 3.3.5. Дробина
- 3.3.5.1. Транспортирование дробины
- 3.3.5.2. Анализ дробины
- 3.3.6. Солодовый экстракт
- 3.4. Кипячение сусла
- 3.4.1. Процессы, происходящие при кипячении сусла
- I растворение и превращение компонентов хмеля;
- I выпаривание воды;
- I стерилизация сусла;
- 3.4.1.3. Испарение воды
- 3.4.1.4. Стерилизация сусла
- 3.4.1.5. Разрушение всех ферментов
- 3.4.1.6. Повышение цветности сусла
- 3.4.1.7. Повышение кислотности сусла
- 3.4.1.8. Образование редуцирующих веществ (редуктонов)
- 3.4.1.9. Изменение содержания диметилсульфида во время и после кипячения сусла
- 3.4.1.10. Содержание цинка в сусле
- 3.4.1.11. Неохмеленное сусло
- 3.4.2. Устройство и обогрев сусловарочного котла
- 3.4.2.1. Сусловарочный котел с прямым обогревом
- 3.4.2.2. Сусловарочный котел с паровым обогревом
- 3.4.2.2.1. Температура
- 3.4.2.2.2. Оснащение сусловарочного котла с паровой рубашкой в виде двойного дна
- 3.4.2.2.3. Форма и материал
- Описание котла (выборочно)
- 3.4.2.2.4. Кипячение с использованием горячей воды (гидрокипячение)
- 3.4.2.3. Сусловарочные котлы
- 3.4.2.3.1. Кипячение при низком избыточном давлении с выносным кипятильником
- 3.4.2.4. Высокотемпературное кипячение сусла
- 3.4.2.5.1. Конденсация
- 3.4.2.6. Потребление энергии при кипячении сусла
- 3 .4.2.7. Конденсат вторичного пара
- 3.4.2.8. Сборник сусла
- 3.4.3. Технология кипячения сусла
- 3.4.3.1. Кипячение сусла
- 3.4.3.2. Внесение хмеля
- 3.4.3.2.1. Расчет дозировки хмеля
- 3.4.3.2.2. Состав и момент внесения хмеля
- 3.4.3.2.3. Способы внесения хмеля
- 3.4.4. Контроль готового сусла
- 3.5. Выход экстракта в варочном цехе
- 3 .5.1. Расчет выхода экстракта в варочном цехе
- 3.5.1.1. Определение массовой доли сухих веществ
- 3.5.1.2. Определение объемно-массовой доли сухих веществ в сусле (содержание экстракта в 1 гл сусла)
- 3.5.1.3. Пересчет объема горячего охмеленного сусла на холодное сусло
- 3.5.1.4. Расчет массы экстракта, полученного в варочном цехе
- 3.5.1.5. Определение выхода
- 3.5.2. Факторы, оказывающие влияние на выход экстракта в варочном цехе
- 3.5.3. Пример расчета выхода экстракта в варочном цехе
- 3.6. Состав оборудования варочного цеха
- 3.6.1. Количество аппаратов и их размещение
- 3.6.2. Размеры аппаратов варочного цеха
- 3.6.3. Материал для
- 3.6.4. Производственная
- 3.6.5. Варочные агрегаты
- 3.6.5.1. Варочные агрегаты мини-пивзаводов ресторанного типа
- 3.6.5.2. Интегральный варочный агрегат
- 3.6.5.3. Экспериментальные и учебные варочные агрегаты
- 3.7. Перекачка горячего охмеленного сусла
- 3.8. Отделение взвесей горячего сусла
- 3.8.1. Холодильная тарелка
- 3.8.2. Отстойный чан
- 3.8.3. Вирпул
- 3.8.3.1. Принцип действия вирпула
- 3.8.3.2. Конструкция вирпула
- 3.8.3.3. Технология осветления сусла в вирпуле
- 3.8.4. Сепараторы
- 3.8.4.1. Принцип
- 3.8.4.3. Устройство и способ действия
- 3.8.4.3.1. Принцип работы тарельчатых барабанов
- 3.8.5. Получение сусла из белкового отстоя
- 3 .9. Охлаждение
- 3.9.1. Процессы при охлаждении
- 3.9.1.1. Охлаждение сусла
- 3.9.1.2. Оптимальное удаление образующихся взвесей холодного сусла
- 3.9.1.3. Аэрация сусла
- 3.9.1.4. Изменения экстрактивности сусла
- 3.9.2. Аппараты
- 3.9.2.1. Устройство пластинчатого теплообменника
- I очень тонкие металлические пластины;
- 3.9.2.2. Принцип работы пластинчатого холодильника
- 3.9.2.3. Преимущества пластинчатого холодильника
- 3.9.3. Аэрация сусла
- 3.9.3.1. Устройства для аэрации сусла
- 3.9.3.2. Момент проведения аэрации дрожжей.
- 3.9.4. Аппараты для удаления взвесей холодного сусла
- 3.9.4.1. Кизельгуровый
- 3.9.4.2. Флотация
- 3.9.4.3. Сепарирование холодного сусла
- 3.9.5. Компоновка оборудования линии охлаждения сусла
- 3.10. Управление и контроль за технологическими процессами производства сусла
- 3.11. Техника безопасности при производстве сусла
- 3.11.1. Предупреждение несчастных случаев вблизи дробилки
- 3.11.2. Предупреждение несчастных случаев при работах в аппаратах варочного цеха
- 3.11.3. Предупреждение несчастных случаев при работе с сепараторами
- 4. Производство пива (брожение, созревание и фильтрование)
- 4.1. Превращения при брожении и созревании
- 4.1.1. Дрожжи
- 4.1.2. Метаболизм дрожжей
- 4.1.2.1. Сбраживание Сахаров
- 4.1.2.1.2. Получение энергии при брожении
- 4.1.2.2. Метаболизм азотистых веществ
- 4.1.2.5. Метаболизм минеральных веществ
- 4.1.3. Образование и расщепление побочных продуктов брожения
- 4.1.3.1. Диацетил (вицинальные дикетоны)
- 4.1.3.2. Альдегиды (карбонилы)
- 4.1.3.3. Высшие спирты
- 4.1.3.4. Эфиры
- 4.1.3.5. Сернистые соединения
- 4.1.3.6. Органические кислоты
- 4.1.4. Другие процессы и превращения
- 4.1.4.1. Изменения азотистого состава
- 4.1.4.2. Понижение рН
- 4.1.4.3. Изменение
- 4.1.4.4. Изменение цветности пива
- 4.1.4.5. Выделение горьких
- 4.1.4.6. Насыщенность пива со2.
- 4.1.4.7. Осветление и коллоидная стабилизация пива
- 4.1.5. Влияние на дрожжи различных факторов
- 4.1.6. Флокуляция дрожжей (хлопьеобразование)
- 4.2. Разведение чистой культуры дрожжей
- 4.2.1. Факторы,
- 4.2.2. Выделение пригодных дрожжевых клеток
- 4.2.3. Разведение чистой культуры в лаборатории
- 4.2.4. Разведение
- 4.2.4.1. Установки для
- 4.2.4.2. Ассимиляционный способ
- 4.2.4.3. Способ разведения
- 4.2.4.4. Выращивание дрожжей открытым способом
- 25 Л молодого пива для пересева;
- 4.3. Классическое брожение и созревание
- 4.3.1. Бродильные чаны и оснащение бродильного отделения
- 4.3.1.1. Бродильные чаны
- 4.3.1.2. Оснащение открытого бродильного отделения
- Дрожжевое отделение, где хранятся дрожжи.
- 4.3.2. Выход экстракта в бродильном отделении
- 4.3.3. Главное брожение в открытых чанах
- 4.3.3.1. Внесение дрожжей
- 4.3.3.1.1. Перемешивание и аэрация дрожжей
- 4.3.3.2. Технология брожения в чане
- 4.3.3.2.1. Стадии брожения
- 4.3.3.2.2. Температура брожения
- 4.3.3.3. Степень сбраживания
- 4.3.3.4. Перекачка пива из бродильного отделения
- 4.3.4. Сбор дрожжей из чана
- 4.3.5. Процессы, протекающие при созревании пива в танках традиционной конструкции
- 4.3.5.1. Насыщение пива диоксидом углерода под избыточным давлением
- 4.3.5.2. Осветление пива
- 4.3.6. Устройство классического отделения дображивания
- 4.3.6.1. Устройство отделения дображивания
- 4.3.6.2. Лагерные танки (танки дображивания)
- 4.3.7. Дображивание в лагерных танках
- 4.3.7.1. Перекачка пива
- 4.3.8. Соединение лагерного танка с линией розлива
- 4.3.8.1. Установление соединения
- 4.3.8.2. Давление при опорожнении танка
- 4.3.9. Перекачка из танков
- 4.3.9.1. Смеситель
- 4.3.9.2. Регулятор давления (друкреглер)
- 4.3.9.3. Получение пива
- 4.3.9.4. Глубокое охлаждение пива
- 4.3.9.5. Фильтрационные остатки
- 4.4. Брожение и созревание в цилиндроконических танках (цкт)
- 4.4.1. Конструкция и установка
- 4.4.1.1. Изготовление, форма и материал цкт
- 4.4.1.2. Размер цкт
- 4.4.1.2.1. Высота сусла в цктб
- 4.4.1.3. Установка и
- 4.4.2. Оборудование цкт
- 4.4.2.1. Контрольные приборы, элементы для обслуживания танка и предохранительная арматура
- 4.4.2.1.1. Оборудование для наполнения и опорожнения цкт
- 4.4.2.1.2. Арматура, устанавливаемая на куполе танка
- 4.4.2.1.3. Контрольные приборы
- 4.4.2.2. Охлаждение цкт
- 4.4.2.2.1. Потребность в холоде
- 4.4.2.2.2. Варианты охлаждения
- 4.4.2.2.3. Теплопередача
- 4.4.2.2.5. Теплоизоляция
- 4.4.2.3. Автоматизация и управление охлаждением
- I Измерение количества со2.
- 4.4.3. Брожение
- 4.4.3.1. Некоторые аспекты брожения и созревания в цкт
- 4.4.3.2. Холодное брожение — холодное созревание
- 4.4.3.3. Холодное брожение
- 4.4.3.4. Теплое брожение без давления — холодное созревание
- 4.4.3.5. Брожение под давлением
- 4.4.3.6. Холодное брожение — теплое созревание
- 4.4.3.7. Холодное главное брожение
- 4.4.3.8. Теплое главное брожение с нормальным или форсированным созреванием
- 4.4.4. Сбор дрожжей из цкт
- 4.4.4.1. Момент сбора дрожжей
- 4.4.4.2. Методы сбора дрожжей
- 4.4.4.3. Обработка и хранение семенных дрожжей
- 4.4.4.3.1. Аэрация семенных дрожжей
- 4.4.4.3.2. Температура хранения дрожжей
- 4.4.4.3.3 Способы хранения дрожжей
- 4.4.4.4. Контроль семенных дрожжей
- 4.4.5. Качество пива перед фильтрованием
- 4.4.6. Рекуперация пива из избыточных дрожжей (пиво из дрожжевого осадка)
- 4.4.6.1. Прессование дрожжей
- 4.4.6.2. Сепарация дрожжей
- 4.4.6.3. Мембранное фильтрование дрожжей
- 4.4.6.4. Обработка пива, рекуперированного из дрожжей
- 4.4.7. Мойка цкт
- 4.4.8. Рекуперация с02
- 4.4.9. Иммобилизованные дрожжи
- 4.5. Фильтрование пива
- 4.5.1. Виды фильтрования
- 4.5.1.1. Механизмы осаждения
- 4.5.1.2. Фильтрующие перегородки
- 4.5.1.3. Вспомогательные
- 1000Х). (Фото: Schenk Filterbau GmbH, г. Вальд-
- 4.5.2. Виды фильтров
- 4.5.2.1. Масс-фильтр
- 4.5.2.2. Намывные фильтры
- 4.5.2.2.1. Намывка фильтрующих слоев
- 4.5.2.2.1.3. Роль кислорода
- 4.5.2.2.1.4. Дозаторы
- 4.5.2.2.2 Намывной рамный фильтр-пресс
- 4.5.2.2.3. Намывной свечной (патронный) фильтр
- 4.5.2.2.4. Намывной дисковый фильтр (фильтр с горизонтальными ситами)
- 4.5.2.2.5. Технические проблемы при фильтровании
- 4.5.2.2.6. Переработка разбавленных фильтрационных остатков
- 4.5.2.2.7. Кизельгуровая фильтрационная установка
- 4.5.2.3. Пластинчатый фильтр-пресс
- 4.5.2.4. Мембранные фильтры
- 4.5.2.4.1. Фильтр с модульными элементами
- 4.5.2.4.2. Мембранный свечной фильтр
- 4.5.2.5. Фильтрационная
- 4.5.2.6. Тонкость фильтрования
- 4.5.2.7. Тангенциально-поточное (Cross-flow) фильтрование
- 4.6. Стабилизация пива
- 4.6.1. Биологическая стабилизация пива
- 4.6.1.1. Пастеризация
- 4.6.1.2. Пастеризация в потоке
- 4.6.1.2.1. Пластинчатый пастеризатор
- 4.6.1.2.2. Температура и длительность термической обработки
- 4.6.1.2.3. Влияние пастеризации в потоке на качество пива
- 4.6.1.3. Горячий розлив пива
- 4.6.1.4. Пастеризация в туннель ном пастеризаторе
- 4.6.1.5. Холодно-стерильный розлив пива
- 4.6.2. Коллоидная
- 4.6.2.1. Характер коллоидного помутнения
- 4.6.2.2. Улучшение коллоидной стойкости пива
- 4.6.2.3. Технологические пути улучшения коллоидной стойкости пива
- 4 .6.2.4. Использование стабилизирующих средств
- 4.6.2.4.1. Силикагели
- 4.6.2.4.2. Поливинилполипирролидон (пвпп)
- 4.6.3. Фильтрационная линия
- 4.6.4. Вкусовая стойкость пива
- 4.6.4.1. Карбонилы, вызывающие старение вкуса (карбонилы старения)
- 1Дёлер - 100%-ная концентрация качества!
- 4.6.4.3. Приемы, позволяющие исключить попадание кислорода на пути от лагерного танка до розлива
- 4.6.4.4. Приемы, позволяющие исключить отрицательное изменение вкуса после розлива
- 4.7. Карбонизация пива
- 4.8. Особые способы приготовления пива
- 4.8.1. Высокоплотное пивоварение
- 4.8.2. Изготовление ледяного пива (Eisbier)
- 4.8.3. Методы удаления спирта из пива
- 4.8.3.1. Мембранные методы
- 4.8.3.1.1, Обратный осмос
- 4.8.3.1.2. Диализ
- 4.8.3.2. Термические способы удаления спирта/ дистилляция
- 4.8.8.3. Подавление образования спирта
- 4.9. Техника безопасности в отделениях брожения, дображивания и фильтрования
- 4.9.1. Несчастные случаи из-за углекислоты брожения
- 4.9.2. Техника безопасности при работе с цкт
- 4.9.3. Техника безопасности при работе с кизельгуром
- 5.1.1.2. Изготовление стеклянных бутылок
- 5.1.1.3. Формы бутылок
- 5.1.1.4. Цвет бутылки
- 5.1.1.5. Обработка поверхности бутылки
- 5.1.1.6. Износ (скаффинг)
- 5.1.1.7. Дополнительная защитная обработка бутылок
- 5.1.1.8. Бутылки многоразового использования
- 5.1.1.9. Последовательность технологических операций при использовании стеклянных бутылок многоразового использования
- 5.1.2. Мойка бутылок многоразового использования
- 5.1.2.1. Факторы, влияющие на чистоту бутылок
- 5.1.2.2. Бутылкомоечные машины
- 5.1.2.2.1. Конструкции
- 5.1.2.2.2. Основные
- 5.1.2.3. Моющий щелочной раствор
- 5.1.2.3.1. Требования к моющему щелочному расвору
- 5 .1.2.3.2. Состав моющего
- 5.1.2.3.3. Поддержание
- 5.1.2.3.4. Подготовка моющего щелочного раствора
- 5.1.2.3.5. Расход воды
- 5 .1.2.4. Техническое
- 5.1.4. Наполнение бутылок
- 5.1.4.1. Основные принципы розлива
- 5.1.4.2. Принципиальные конструктивные решения разливочно-укупорочных блоков
- 5.1.4.3. Основные узлы разливочно-укупорочного блока
- 5.1.4.4. Конструкция
- 5.1.4.5. Способ вспрыска воды под высоким давлением
- 5.1.5. Укупоривание бутылок
- 5.1.5.1. Укупоривание бутылок кронен-пробками
- 5.1.5.2. Укупоривание пробкой с пружинным хомутом
- 5.1.6. Промывка
- 5.1.7. Контроль наполненных и укупоренных бутылок
- 5.1.7.1. Контроль уровня наполнения
- 5.1.7.2. Кислород в горлышке бутылки
- 5.1.8. Пастеризация в бутылках
- 5.1.8.1. Обоснование пастеризации в бутылках
- 5.1.8.2. Важнейшие
- 5.1.8.3. Система обеспечения необходимого количества пе
- 5.1.9. Нанесение этикеток и фольги на бутылки
- 5.1.9.2. Этикеточный клей
- 5.1.9.3. Основной принцип нанесения этикеток
- 5.1.9.4. Конструктивные элементы этикетировочного автомата
- 5.1.9.5. Нанесение фольги на головку бутылки
- 5.1.10. Датирование
- 5.2. Особенности розлива в стеклянные одноразовые бутылки
- 5.2.1. Распаковка новых стеклянных бутылок
- 5.2.2. Ополаскивание
- 5.3. Розлив напитков в многоразовые пэт-бутылки
- 5.3.1. Пластиковые бутылки
- 5.3.1.2. Прочие виды
- 5.3.2. Изготовление пэт-бутылок
- 5.3.3. Транспортировка пустых пэт-бутылок
- 5.3.4. Мойка пэт-бутылок многоразового использования
- 5.3.5. Инспектирование
- 5.3.6. Процесс розлива в пэт-бутылки
- 5.3.7. Укупоривание пэт-бутылок
- 5.3.7.1. Алюминиевые колпачки
- 5.3.7.2. Пластмассовые
- 5.3.8. Этикетирование пэт-бутылок
- 5.4. Особенности наполнения одноразовых пэт-бутылок
- 5.5. Розлив пива в банки
- 5.5.1. Банки и их укупоривание
- 5.5.2. Складирование,
- 5.5.3. Инспектирование пустых банок
- 5.5.4. Ополаскивание банок
- 5.5.5. Наполнение банок
- 5.5.5.1. Разливочный автомат с дозированием по уровню
- 5.5.5.2. Разливочный автомат с дозированием по объему
- 5.5.6. Укупоривание банок
- 5.5.7. Мойка блоков розлива и укупоривания банок
- 5.5.8. Виджеты
- 5.5.9. Инспектирование полных банок
- 5.5.10. Пастеризация
- 5.5.11. Круговое
- 5.5.12. Датирование банок
- 5.6. Розлив в бочки, кеги, специальные бочонки и большие жестяные банки
- 5.6.2. Кеги и фитинги
- 5.6.3. Мойка и наполнение кегов
- 5.6.3.2. Наполнение кегов
- 5.6.4. Линия розлива в кеги
- 5.6.5. Розлив в малые
- 5.6.6. Розлив в большие банки
- 5.7. Упаковка
- 5.7.1. Транспортировка бутылок и банок
- 5.7.2. Обработка новых стеклянных бутылок и банок
- 5.7.3. Виды упаковки, транспортировка
- 5.7.3.1. Виды упаковки
- 5.7.3.2. Транспортировка единиц упаковки
- 5.7.3.4. Складирование ящиков
- 5.7.3.5. Мойка ящиков
- 5.7.4. Выемка и укладка
- 5.7.4.1. Захватные головки и захватные патроны
- 5.7.4.2. Виды укладчиков
- 5.7.4.2.1. Укладчик с прерывистым движением
- 5.7.4.2.2. Мультипакер
- 5.7.4.2.3. Круговой укладчик
- 5.7.4.3. Переориентирующие машины для бутылок
- 5.7.4.4. Специальные машины для укладки и сортировки упаковочных единиц
- 5.7.5. Формирование
- 5.7.5.2. Конструкция и принцип действия пакетосборщиков и пакеторазборщиков
- 5.7.5.3. Штабелирование
- 5.7.5.4. Транспортные средства для механизации погрузочно- разгрузочных работ
- 5.7.5.5. Складирование поддонов
- 5.7.5.6. Устройства для подачи и отвода пакетов- поддонов
- 5.8. Комплектная линия розлива
- 5.9. Потери пива
- 5.9.1. Расчет объема товарного пива
- 5.9.2. Снятие остатков и пересчет на товарное пиво
- 5.9.3. Расчет потерь по жидкой фазе
- 5.9.4. Расчет расхода солода в кг на гл пива
- 5.9.5. Оценка потерь и возможности их снижения
- 6. Мойка и дезинфекция
- 6.1. Материалы, используемые для изготовления емкостей и трубопроводов, и их устойчивость по отношению к моющим средствам
- 6.1.1. Емкости из алюминия
- 6.1.2. Емкости и трубопроводы из нержавеющей стали
- 6.1.3. Шланги и уплотнения
- 6.2. Моющие средства
- 6.3. Дезинфицирующие средства
- 6.4. Проведение мойки и дезинфекции в системе cip
- 6.5. Процесс мойки
- 6.6. Механическая мойка
- 6.7. Контроль мойки и дезинфекции
- 6.8. Меры безопасности при проведении мойки и дезинфекции
- 7. Готовое пиво
- 7.1. Химический состав пива
- 7.1.1. Компоненты пива
- 7.1.2. Пиво и здоровье
- 7.2. Органолептические показатели пива
- 7.2.1. Аромат и вкус пива
- 7.2.1.1. Аромат пива
- 7.2.1.2. Полнота вкуса
- 7.2.1.3. Игристость
- 7.2.1.4. Горечь пива
- 7.2.2. Пенистость и
- 7.3. Типы пива и их особенности
- 7.3.1. Пиво верхового брожения
- 7.3.1.1. Особенности
- 7.3.1.2. Пшеничное пиво типа Вайцен
- 7.3.1.3. «Белое» пиво типа Вайсе (Weipe)
- 7.3.1.4. «Старое» пиво типа Альт (Alt)
- 7.3.2. Типы и сорта пива низового брожения
- 7.3.2.1. Пиво типа Пилзнер (Pilsner)
- 7.3.2.3. Пиво типа «Export»
- 7.3.2.4. Пиво типа «Шварц» (Schwarzbiere, Черное пиво)
- 7.3.2.5. Пиво типа Фест (Festbiere, «Праздничное пиво»)
- 7.3.2.6. Пиво Айс (Eisbier, Ледяное пиво)
- 7.3.2.7. Пиво типа
- 7.3.2.8. Пиво типа Бок (Bockbier)
- 7.3.2.9. Пиво Двойной Бок (Doppelbock)
- 7.3.2.10. Безалкогольное пиво
- 7.3.2.11. Диетическое пиво
- 7.3.2.14. Типы пива,
- 7.3.2.15. Смешанные
- 7.3.3. Тенденции развития типов пива, приготовляемых без учета немецкого Закона о чистоте пивоварения
- 7.4. Контроль качества
- 7.4.1. Дегустация пива
- 7.4.2. Микробиологическое исследование
- 7.4.3. Анализ пива
- 7.4.3.2. Определение цветности пива
- 7.4.3.3. Определение величины рН
- 7.4.3.4. Определение содержания кислорода в пиве
- 7.4.3.5. Определение содержания диацетила в пиве
- 7.4.3.6. Определение пеностойкости
- 7.4.3.7. Определение
- 7.4.3.8. Определение
- 7.4.3.9. Определение склонности
- 7.4.3.10. Прочие методы анализа
- 7.5. Лабораторное оборудование и измерительная техника
- 7.5.1. Приборы
- 7.5.2. Расходомеры
- 7.5.3. Измерительные преобразователи уровня
- 7.5.4. Измерительные преобразователи плотности
- 7.5.5. Измерительные преобразователи мутности
- 7.5.6. Приборы для измерения содержания кислорода
- 7.5.7. Измерение величины рН
- 7.5.8. Измерение электрической проводимости
- 7.5.9. Датчики сигнализации предельного уровня
- 7.5.10. Измерение давления
- 8. Малые пивоваренные производства
- 8.1. Барные
- 8.2. Производственный мини-пивзавод
- 8.3. Любительское пивоварение
- 25 Кг ячменя (с 15%-ной влажностью)
- 9. Утилизация отходов и охрана окружающей среды
- 9.1. Законодательство об охране окружающей среды
- 9.2. Сточные воды
- 9.2.1. Расходы
- 9.2.2. Основные понятия, имеющие отношение к сточным водам
- 9.2.3. Очистка сточных вод
- 9.2.3.2. Установки для анаэробной очистки сточных вод
- 9.2.3.3. Объемы и состав
- 9.2.3.4. Очистка стоков с использованием смесительных и распределительных бассейнов
- 9.3. Остатки материалов и отходы
- 9.3.1. Пивная и хмелевая дробина
- 9.3.2. Взвеси
- 9.3.3. Остаточные дрожжи
- 9.3.4. Кизельгуровый шлам
- 9.3.5. Этикетки
- 9.3.6. Бой стекла
- 9.3.7. Банки для пива
- 9.3.8. Небольшие по объемам отходы
- 9.4. Промышленные выбросы
- 9.4.1. Пыль и пылевые выбросы
- 9.4.2. Выбросы из варочного цеха
- 9.4.3. Выбросы продуктов сгорания
- 9.4.4. Шумы
- 10. Энергетическое хозяйство на пивоваренных и солодовенных предприятиях
- 10.1. Потребление энергии
- 10.2. Паровые котельные агрегаты
- 10.2.1. Виды топлива
- 10.2.2.1.Теплота
- 10.2.2.2. Влажный пар
- 10.2.2.3. Перегретый пар
- 10.2.2.4. Горячая вода
- 10.2.3. Паровой котел
- 10.2.3.1. Классификация паровых котлов
- 10.2.3.2. Типы конструкций паровых котлов
- 10.2.3.3. Трехходовой котел
- 10.2.3.4. Рекуперация энергии и повышение кпд
- 10.2.4. Паросиловые установки
- 10.2.5. Блочные
- 10.3. Холодильные установки
- 10.3.1. Хладагенты
- 10.3.1.1. Хладагенты
- 10.3.1.2. Хладоносители
- 10.3.2. Компрессионные холодильные установки
- 10.3.2.1. Принцип действия
- 10.3.2.1. Испарители
- 10.3.2.2. Компрессор
- 10.3.2.3. Конденсаторы
- 10.3.2.4. Регулирующий клапан
- 1, 2, 3, 4 — Впускной, выпускной, спускной и воздушный
- 10.3.2.5. Накопитель ледяной воды (рис. 10.19)
- 10.3.3. Абсорбционная холодильная установка
- 10.3.4. Охлаждение помещений и жидкостей
- 10.3.4.2. Современные
- 10.3.4.3. Охлаждение жидкостей
- 10.3.5. Рекомендации по повышению экономичности эксплуатации холодильной установки
- 10.4. Электроборудование
- 10.4.1. Получение
- 1 0.4.2. Коэффициент мощности cos φ
- 10.4.3. Преобразование (трансформация) электрического тока
- 1 0.4.4. Меры безопасности
- 10.4.5. Рекомендации по экономичному расходу электроэнергии
- 10.5. Насосы,
- 10.5.1. Насосы
- 10.5.1.1. Лопастные насосы
- 10.5.1.1.2. Вихревые насосы
- 10.5.1.2. Объемные насосы
- 10.5.1.2.1.1. Эксцентриковый винтовой насос
- 10.5.1.2.2. Объемные насосы
- 10.5.1.3. Расчет параметров насосов
- 1 0.5.1.4. Регулирование числа оборотов насосов
- 10.5.2. Вентиляторы
- 10.5.2.1. Осевые вентиляторы
- 10.5.2.2. Центробежные вентиляторы
- 10.5.3. Компрессорные установки для сжатого воздуха
- 10.5.3.1.4. Винтовые
- 10.5.3.1.5. Турбокомпрессоры
- 10.5.3.2. Осушители воздуха
- 10.5.3.4. Трубопроводы высокого давления
- 10.5.3.5. Воздушные фильтры
- 11. От автоматизации —
- X. О. Мит (н. О. Mieth), г. Гамбург
- 11.1. История развития и технические предпосылки автоматизации пивоваренного производства — высокие технологии в повседневной жизни
- 11.1.1. Устойчивые к коррозии и совместимые с пищевыми продуктами материалы
- 11.1.2. Автоматическая мойка и дезинфекция cip (Cleaning In Place)
- 11.1.3. Оборудование, отвечающие требованиям автоматизации и безразборной мойки (cip)
- 11.1.4. Технология пивоварения, отвечающая задачам автоматизации
- 11.1.5. Системы
- 11.1.6. Интеграция технологического процесса — «ноу-хау»
- 11.1.7. Искусственный интеллект и киПиА
- 11.1.8. Роль пивовара в автоматизации пивоваренного производства
- 11.2. Обозначения и системный подход к проектированию систем автоматизации пивоварения в соответствии с общими нормативами обозначения технологических процессов
- 11.2.1. Введение в принципы обозначения процессов и аппаратов
- 11.2.1.1. Стандартизированные обозначения типовых аппаратов и основных операций
- 11.2.1.2. Символы для обозначения специальных аппаратов с учетом
- 11.2.1.3. Стандарты din по технологии производства, имеющие значение для автоматизации
- 11.2.1.4. Необходимость действий
- 11.2.2. Основы
- 11.2.2.1. Этап проектирования 1: базовая схема технологического процесса или «блок- схема»
- 11.2.2.2. Этап проектирования 2: принципиальная технологическая схема процесса
- 835 Рис. 11.3. Блок-схема технологического процесса: маршрут сусла
- 11.2.2.3. Этап проектирования 3: формулировка задания на киПиА в соответствии с принципиальной схемой технологического процесса
- 11.2.2.4. Этап проектирования 4: словесное описание процесса к технологической схеме
- 11.2.2.5. Этап проектирования 5: функциональная схема трубопроводов и арматуры
- 11.2.2.6. Этап проектирования 6: функциональный план в соответствии с din 40 719 и iec 848
- 11.3. КиПиА согласно din и в практике автоматизации пивоваренного предприятия
- 11.3.1. К вопросу
- 11.3.1.1. Последствия
- 11.3.1.2. Полезность
- 11.3.2. Основы аппаратного обеспечения (ао) автоматизации пивоваренного производства. Функции ао
- 11.3.2.1. Система управления производственным процессом
- 11.3.2.2.1.2. Входы двоичных сигналов от датчиков предельных значений.Технические особенности коммутирования
- 11.3.2.2.2. Аналоговые сигналы
- 11.3.2.2.3. Аналогово-цифровые гибридные схемы
- 11.4. Задачи и средства интеграции технологических процессов
- 11.4.1. Задачи, стоящие
- 11.4.1.1. Шаг проектирования 5.1: определение производительности оборудования и гибкости процесса при составлении плана производства
- 11.4.1.2. Подэтап проектирования 5.2: составление диаграммы занятости
- 11.4.1.3. Подэтап проектирования 5.3: составление функциональной схемы
- 11.4.1.4. Методы интеграции стандартизированных производственных линий в проекте автоматизации пивоваренного предприятия
- 11.4.1.4.2. Вся производственная линия «в одних руках»
- 11.4.2. Системы и компоненты трубопроводов, обеспечивающие несмешиваемость сред и отвечающие требованиям безразборной мойки cip
- 11.4.2.1. Трубное соединение
- 11.4.2.2. Измерительные
- 11.4.2.3. Исполнительные органы
- 11.4.2.3.3. Поворотные заслонки (типа «бабочка»)
- 11.4.2.4. Необходимость стандартизации систем трубопроводов в автоматизированных установках для пищевых продуктов
- 11.4.3. Концепции надежности разделения сред
- 11.4.3.1. Системы жесткой трубной обвязки с перекидными калачами
- 11.4.3.2. Системы жесткой
- 11.4.3.3. Системы жесткой трубной обвязки с двухседельными клапанами
- Isbn 5-93913-006-2