Основное уравнение гидростатики
;^Из уравнений (11,15) следует, что давление в покоящейся жидкости изменяется только по вертикали (вдоль оси 2, рис, П-2), оставаясь одинаковым во всех точках любой горизонтальной плоскости, так как изменения давлений вдоль осей х и у равны нулю, В связи с тем, что в этой системе
уравнений частные производные ~ и ^ равны нулю, частная производная может быть заменена на и, следовательно
Отсюда
йр — pgdz = 0 (11,16)
Разделив левую и правую части последнего выражения на pg и переменив знаки, представим это уравнение в виде
с1г -] !— ёр = 0
98
32 Гл. П. Основы гидравлики. Общие вопросы прикладной гидравлики Для несжимаемой однородной жидкости плотность постоянна и, следовательно йг + с! ( —— ) = О ре ) или откуда после интегрирования получим р _ Р5 СОП5І (II-17) Для двух произвольных горизонтальных плоскостей 1 и 2 уравнение (11,17) выражают в форме г1 + Рл Рё. Рі Р§ (11,18) у р а в н е - Уравнение 11,17) пли (11,18) является основным нием гидростатики. В уравнении (11,18): 2, иг2 — высоты расположения двух точек внутри покоящейся однородной капельной жидкости над произвольно вобранной горизонтальной плоскостью отсчета (плоскостью сравнения), а рх и р2 — гидростатические давления в этих точках. Рассмотрим, например, две частицы жидкости, из которых одна рас- положена в точке 1 внутри объема жидкости (рис. П-З) — на высоте г , от произвольно выбранной плоскости сравнения 0—0„ а другая находится в точ- ке 2 на поверхности жидкости — на вы- соте г0 от той же плоскости. Пусть р и р0 — давления в точках 1 и 2 соответст- венно. При этих обозначениях, согласно уравнению (11,18) р Р£ * 1 Ро О- 2 ■ г0 + -О Р (11,18а) Рис. 11-3. К основному уравнению гидростатики. ИЛИ Ро (11,186) Член г в уравнении гидростатики [уравнение (11,17)], представляющий собой высоту расположения данной точки над произвольно выбранной плоскостью сравнения, называется нивелирной высотой. Она, как и другой член этого уравнения выражается в единицах длины или в системе МКГСС [-£-] = д Гі^-1 = [м] [ у ] I м2-кгс J I кгс ] Величину называют напором давления, или пьезометрическим напором. Следовательно, согласно основному уравнению гидростатики, для каждой точки покоящейся жидкости сумма нивелирной высоты и пьезометрического напора есть величина постоянная.
о Рё
* -I (Ч? 'гч? |
|
|
л 1 . ♦ | - | Я |
| с | 1 |
а б Рис. П-4. Условия равновесия в сообщающихся сосудах: а <?- однородная жидкость; б разнородные (несмещивакициеся) жидкости Принцип сообщающихся сосудов и его использование. Пусть два открытых сообщающихся сосуда (рис. П-4, а) заполнены жидкостью плотностью р. Выберем произвольно плоскость сравнения 0—0 и некоторую точку А внутри жидкости, лежащую в этой плоскости. Если считать точку А принадлежащей левому сосуду, то, согласно уравнению (П,18г), давление в данной точке Р Р атм "Ь Р£г0 2 А. Г. Касаткин
34 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлики Если же считать точку А принадлежащей правому сосуду, то давление в ней (г' — г" = 0, так как плоскость 0—0 проходит через точку А). При равновесии для каждой точки давление одинаково в любом направлении (в противном случае происходило бы перемещение жидкости). Следовательно . Аналогичный вывод может быть сделан для двух закрытых сообщающихся сосудов, в которых давления над свободной поверхностью жидкости одинаковы. Таким образом, в открытых или закрытых находящихся под одинаковым давлением сообщающихся сосудах, заполненных однородной жидкостью, уровни ее располагаются на одной высоте независимо от формы и поперечного сечения сосудов. Этот принцип используется, в частности, для измерения уровня жидкости в закрытых аппаратах с помощью водомерных стекол. Если сообщающиеся сосуды заполнены двумя несмешивающимися жидкостями, имеющими плотности р' (левый сосуд) и р" (правый сосуд), то при проведении плоскости сравнения 0—0 через границу раздела жидкостей (рис. П-4, б) аналогично предыдущему получим Отсюда следует, что в сообщающихся сосудах высоты уровней разнородных жидкостей над поверхностью их раздела обратно пропорциональны плотностям этих жидкостей. Если сосуды заполнены одной жидкостью плотностью р, но давления над уровнем жидкости в них неодинаковы и равны р' (левый сосуд) яр" (правый сосуд), то Р 4- Р£2ц = р + Р£2о откуда разность уровней жидкости в сосудах Р Ратм Р^о Рапп Н~ Р«*Ь Ратм ’Р8го ИЛИ г0=20 Рис. П-5. К определению высоты гидравлического затвора в непрерывно действующем ЖИДКОСТНОМ сепараторе. Рис. 11-6. Пневматический измеритель уровня ЖИДКОСТИ. Р 2 о — Р 2о (11,20) ИЛИ (II,20а) р —р /у (11,21)
Некоторые практические приложения основного уравнения гидростатики 35 Уравнение (11,21) применяют при измерениях давлений или разностей давлений между различными точками с помощью дифференциальных и-образных манометров (см., например, рис. 11-16 и П-17). Условия равновесия жидкостей в сообщающихся сосудах используют также для определения высоты гидравлического затвора в различных ап- паратах. Так, в непрерывно действующих сепараторах (рис. .11-5) смесь жидкостей различной плотности (эмульсия) непрерывно поступает в ап- парат 1 по центральной трубе 2 и расслаивается в нем, причем более легкая жидкость плотностью р' удаляется сверху через штуцер 3, а более тяжелая имеющая плотность р", — снизу через О-образный затвор 4. Если при- нять, что уровень границы раздела фаз поддерживается на границе ци- линдрической и конической частей аппарата и провести через эту границу плоскость сравнения 0—0, то . необходимая высота гидравлического затвора, согласно уравне- нию (11,20), составит *о =го-й- (П.206) Рис. ІІ-7. Схема гидравлического пресса. При этом допускается, что давление над жидкостью внутри аппарата и на выходе из затвора одинаково. Пневматическое измерение количества жидкости в резервуарах. Для контроля за объемом жидкости в каком-либо резервуаре 1, например подземном (рис. П-6), в него помещают трубу 2, нижний конец которой доходит почти до днища резервуара. Давление над жидкостью в резервуаре равно р0. По трубе 2 подают сжатый воздух или другой газ, постепенно повышая его давление, замеряемое манометром 3. Когда воздух преодолеет сопротивление столба жидкости в резервуаре и начнет барботировать сквозь жидкость, давление р, фиксируемое манометром, перестанет воз- растать и будет равно, согласно уравнению (П,18г) Р~Ро + Р£2о откуда уровень жидкости в резервуаре —Р — Ро 98 (11,22) По величине.20 и известной площади поперечного сечения резервуара определяют объем находящейся в нем жидкости. Гидростатические машины. На использовании основного уравнения гидростатики основана работа гидростатических машин, например гидравлических прессов (рис. ІІ-7), применяемых в химической промышленности для прессования и брикетирования различных материалов. Если приложить относительно небольшое усилие к поршню /, движущемуся в цилиндре меньшего диаметра и создать давление р на поршень, то, согласно закону Паскаля, такое же давление р будет приходиться на поршень 2 в цилиндре большего диаметра При этом сила давления на поршень 1 составит а сила давления на поршень 2 пйі пйі В результате поршень в цилиндре большего диаметра передаст силу давления, во столько раз большую, чем сила, приложенная к поршню в цилиндре меньшего диаметра, во сколько поперечное сечение цилиндра 2 * 35
•36 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлики больше, чем цилиндра 1. Таким способом с помощью сравнительно небольших усилий осуществляют прессование материала 3, помещенного между поршнем 2 и неподвижной плитой 4. Давление жидкости на дно и стенки сосуда. Если жидкость помещена в сосуд любой формы, то гидростатическое давление во всех точках горизонтального дна сосуда одинаково, давление же на его боковые стенки возрастает с увеличением глубины погружения. Гидростатическое давление р на уровне дна сосуда (см. рис. П-З), как и для любой точки внутри жидкости, определяется уравнением (П,18г), но для всех точек дна величина (г0 — г) представляет собой высоту жидкости в сосуде. Обозначив последнюю через Н, получим Р — Ро + Р8н (П,23) Таким образом, сила давления Р на горизонтальное дно сосуда не зависит от формы сосуда и объема жидкости в нем. При данной плотности жидкости эта сила определяется лишь высотой столба жидкости Н и площадью И дна сосуда: р=,рГ или / Р=(Ро + Р§Н)Г (И,24) Гидростатическое давление жидкости на вертикальную стенку сосуда изменяется по высоте. Соответственно сила давления на стенку также различна по высоте сосуда. Поэтому Р — (Ро +.Р£Й) Р (11,24а) где Л — расстояние от нерхнего уровня жидкости до центра тяжести смоченной площади /■" стенки. В уравнении (II,24а) выражение в скобках представляет собой гидростатическое давление в центре тяжести, смоченной площади стенки. Поэтому сила давления на вертикальную стенку равна произведению ее смоченной площади на гидростатическое давление в центре тяжести смоченной площади стенки. Точка приложения равнодействующей Р сил давления на стенку называется центром давления. Эта точка расположена всегда ниже центра тяжести смоченной площади. Если давление р„ передается жидкостью в одинаковой степени каждому элементу стенки, независимо от глубины его погружения, и, следовательно, равнодействующая сила этого давления приложена в центре тяжести стенки, то давление столба жидкости на стенку тем больше, чем глубже расположен соответствующий ее элемент. В результате, в частности, для вертикальной прямоугольной 2 стенки центр давления расположен на расстоянии -у Н от верхнего уровня жидкости, Б. ГИДРОДИНАМИКА Движущей силой при течении жидкостей является разность давлений, которая создается с помощью насосов или компрессоров либо вследствие разности уровней или плотностей жидкости. Знание законов гидродинамики позволяет находить разность давлений, необходимую для перемещения данного количества жидкости с требуемой скоростью, а значит, и расход энергии на это перемещение, или наоборот — определять скорость и расход жидкости при известном перепаде давления. Различают внутреннюю и внешнюю задачи гидродинамики. Внутренняя задача связана с анализом движения жидкостей внутри труб и каналов. Внешней задачей гидродинамики является изучение закономерностей обтекания жидкостями различных тел (при механическом перемешивании, осаждении твердых частиц в жидкости и т. п.).
- Scan Pirat
- Глава IV. Перемещение и сжатие газов (компрессорные машины)
- Общие сведения . . .
- Сравнение и области применения компрессорных машин различных
- Глава V. Разделение неоднородных систем 176
- Общие сведения 186
- Общие сведения . 227
- Глава VI. Перемешивание в жидких средах 246
- Общие сведения 246
- Глава VII. Основы теплопередачи в химической аппаратуре 260
- Общие сведения 260
- Глава VIII. Нагревание, охлаждение и конденсация 310
- Общие сведения . 310
- Нагревание газообразными высокотемпературными теплоносителями
- Общие сведения . 347
- Общие сведения 382
- Общие сведения 434
- Глава XV. Сушка . . .Ч 583
- Глава XVI. Кристаллизация 632
- Глава XVII. Искусственное охлаждение 646
- Циклы, основанные на сочетании дросселирования и расширения газа
- Глава XVIII. Измельчение твердых материалов 679
- Общие сведения 679
- Крупное дробление 684
- Тонкое измельчение n 693
- Глава XIX. Классификация и сортировка материалов 703
- Глава XX. Смешение твердых материалов 711
- 2. Возникновение и развитие науки о процессах и аппаратах
- Возникновение и развитие науки о процессах и аппаратах
- 3. Классификация основных процессов
- 4. Общие принципы анализа и расчета процессов и аппаратов
- Общие принципы анализа и расчета процессов и аппаратов
- Основные определения
- Некоторые физические свойства жидкостей
- 2. Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Дифференциальные уравнения равновесия Эйлера
- Основное уравнение гидростатики
- Основное уравнение гидростатики
- Основные характеристики движения жидкостей
- Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
- Уравнение неразрывности (сплошности) потока
- 8. Дифференциальные уравнения движения Эйлера
- 9. Дифференциальные уравнения движения Навье—Стокса
- 9., Дифференциальные уравнения движения Навье—Стокса
- 10. Уравнение Бернулли
- 10. Уравнение Бернулли
- Некоторые практические приложения уравнения Бернулли
- 11. Некоторые практические-приложения уравнения Бернулли
- 12« Основы теории подобия и анализа размерностей.
- 12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
- 12. Основы теории подобия и анализа размерностей. Принципы моделирования п
- Гидродинамическое подобие
- 13. Гидродинамическое подобие
- 13. Гидродинамическое подобия
- 13. Гидродинамическое подобие
- Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- Течение неньютоновских жидкостей
- Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
- Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
- Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
- Называемый пластическо
- Зависимость (11,105) изображается на рис. 11-26 линией 2
- 15. Течение неньютоновских жидкостей
- Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
- Расчет диаметра трубопроводов
- 17. Движение тел в жидкостях
- Движение тел в жидкостях
- 17. Движение тел в жидкостях
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 101
- Движение жидкостей через неподвижные зернистые и пористые слои
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 103
- Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 105
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
- 20. Элементы гидродинамики двухфазных потоков
- Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- Структура потоков и распределение времени пребывания жидкости в аппаратах
- Глава III
- Перемещение жидкостей (насосы)
- Общие сведения
- Основные параметры насосов
- 3. Напор насоса. Высота всасывания
- Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- Поршневые насосы
- 5. Поршневые насосы
- 5. Поршневые насосы
- Специальные типы поршневых и центробежных насосов
- Насосы других типов
- 7. Насосы других типов
- 7. Насосы других типов
- Сравнение и области применения насосов различных типов
- 8. Сравнение и области применения насосов различных типов
- Глава IV
- Перемещение и сжатие газов (компрессорные машины)
- Общие сведения
- 2. Термодинамические основы процесса сжатия газов
- 2.. Термодинамические основы процесса сжатия газов
- 2. Термодинамические основы процесса сжатия газов
- 3. Поршневые компрессоры
- Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 4. Ротационные компрессоры и газодувки
- Ротационные компрессоры и газодувки
- 6. Осевые вентиляторы и компрессоры
- Осевые вентиляторы и компрессоры
- Винтовые компрессоры
- Вакуум-насосы
- 8. Вакуум-насосы
- Глава V
- 1. Неоднородные системы и методы их разделения
- Материальный баланс процесса разделения
- Скорость стесненного осаждения (отстаивания)
- 3. Скорость стесненного осаждения (отстаивания)
- 4. Коагуляция частиц дисперсной фазы
- Коагуляция частиц дисперсной фазы
- Отстойники
- 5. Отстойники
- 5. Отстойники
- Общие сведения
- 6. Общие сведения
- 6. Общие сведения
- Уравнения фильтрования
- 8. Фильтровальные перегородки
- Фильтровальные перегородки
- Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтре*
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 10. Расчет фильтров
- 9. Устройство фильтров
- Основные положения
- 12. Центробежная сила и фактор разделения
- Центробежная сила и фактор разделения
- Процессы в отстойных центрифугах
- Процессы в фильтрующих центрифугах
- Устройство центрифуг
- 16. Расчет центрифуг
- 16. Расчет центрифуг
- 17. Общие сведения
- 17. Общие сведения
- 18. Гравитационная очистка газов
- 2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
- Очистка газов под действием инерционных и центробежных сил
- 20. Очистка газов фильтрованием
- Очистка газов фильтрованием
- Мокрая очистка газов
- 21. Мокрая очистка газов
- Электрическая очистка газов
- 22. Электрическая очистка газов
- 22. Электрическая очистка газов
- 23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
- Коагуляция и укрупнение частиц, отделяемых при газоочистке
- 24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
- Глава VI
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 3. Механические перемешивающие устройства
- 3. Механические перемешивающие устройства
- Пневматическое перемешивание
- 5. Перемешивание в трубопроводах
- Перемешивание в трубопроводах
- 6. Перемешивание с помощью сопел и насосов
- 2. Тепловые балансы
- Тепловые балансы
- Основное уравнение теплопередачи
- 4. Температурное поле и температурный градиент
- Температурное поле и температурный градиент
- Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- Тепловое излучение
- 6. Тепловое излучение
- 6. Тепловое излучение
- 7. Передача тепла конвекцией (конвективный теплообмен)
- Передача тепла конвекцией (конвективный теплообмен)
- 7. Передача тепла конвекцией (конвективный теплообмен) 277
- 7. Передача тепла конвекцией (конвективный теплообмен) 279
- 8. Опытные данные по теплоотдаче
- Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 10. Сложная теплоотдача
- Численные значения коэффициентов теплоотдачи
- Сложная теплоотдача
- Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 12., Нестационарный теплообмен
- 12. Нестационарный теплообмен
- Дгср _ ——-f - j_t -
- 12. Нестационарный теплообмен
- Глава VIII нагревание, охлаждение и конденсация
- Общие сведения
- Нагревание водяным паром
- Центробежный насос.
- 4. Нагревание топочными газами
- Нагревание горячей водой
- Нагревание топочными газами
- 1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
- Нагревание высокотемпературными теплоносителями
- I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
- Нагревание электрическим током
- Охлаждение до обыкновенных температур
- Охлаждение до низких температур
- Конденсация паров
- Трубчатые теплообменники
- Змеевиковые теплообменники
- Пластинчатые теплообменники
- Оребренные теплообменники
- 16. Теплообменные устройства реакционных аппаратов
- Конденсаторы смешения
- Расчет теплообменных аппаратов
- Расчет конденсаторов паров
- Глава IX
- Общие сведения
- Однокорпусные выпарные установки
- 2. Однокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Многокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Устройство выпарных аппаратов
- Расчет многокорпусных выпарных аппаратов
- Общие сведения
- 1. Общие сведения
- Равновесие при массопередаче
- Скорость массопередачи
- 3. Скорость массопередачи
- Движущая сила процессов массопередачи
- Массопередача с твердой фазой
- 6. Массопередача с твердой фазой
- Глава XI
- Равновесие при абсорбции
- Материальный и тепловой балансы процесса
- Скорость процесса
- Устройство абсорбционных аппаратов
- — Щели.
- Расчет абсорберов
- 7. Десорбция
- 8. Схемы абсорбционных установок
- Глава XII
- Характеристики двухфазных систем жидкость—пар
- 4. Ректификация
- 4. Ректификация
- Специальные виды перегонки
- Глава XIII
- Общие сведения
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 1/ 2, 8, .... П — ступени.
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 4. Устройство экстракционных аппаратов
- Ступенчатые экстракторы
- 4. Устройство экстракционных аппаратов
- 4. Устройство экстракционных аппаратов
- 1Л. XIII. Экстракция
- 4. Устройство экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 7. Равновесие и скорость процессов экстракции и растворения
- Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
- Способы экстракции и растворения
- 8. Способы экстракции и растворения
- Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
- Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- Расчет экстракционных аппаратов
- Глава XIV
- Общие сведения
- 2. Характеристики адсорбентов и их виды
- Равновесий при адсорбции
- 3. Равновесие при адсорбции
- Скорость адсорбции
- 4. Скорость адсорбции
- 4. Скорость адсорбции
- Десорбция
- 5. Десорбция
- 6. Устройство адсорберов и схемы адсорбционных установок
- 6. Устройство адсорберов и схемы адсорбционных установок
- Расчет адсорберов
- 7. Расчет адсорберов
- Ионообменные процессы
- Глава XV
- Основные параметры влажного газа
- Равновесие при сушке
- Материальный и тепловой балансы сушки
- Определение расходов воздуха и тепла на сушку
- Варианты процесса сушки
- Скорость сушки
- 8. Скорость сушки
- Dwc cftuiP
- Устройство суЬшлок
- Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- Конвективные сушилки с перемешиванием слоя материала
- Конвективные сушилки со взвешенным слоем материала
- 1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
- I камера сушилки; 2 — полые плиты.
- Глава XVI
- 1, Общие сведения
- Равновесие при кристаллизации
- Влияние условий кристаллизации на свойства кристаллов
- Способы кристаллизации
- Устройство кристаллизаторов
- I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
- 7. Расчеты кристаллизаторов Материальный баланс кристаллизации
- Глава XVII искусственное охлаждение
- Общие сведения
- Термодинамические основы получения холода
- Другие методы получения низких температур
- Компрессионные паровые холодильные машины
- Абсорбционные холодильные машины
- Пароводяные эжекторные холодильные машины
- Циклы с дросселированием газа
- Циклы с тепловым насосом
- Сравнение основных циклов глубокого охлаждения
- Методы разделения газов
- Механические процессы
- Глава XVIII измельчение твердых материалов
- Общие сведения
- Физико-механические основы измельчения.
- Щековые дробилки
- Конусные дробилки
- Валковые дробилки
- Ударно-центробежные дробилки
- Барабанные мельницы
- Кольцевые мельницы
- 8 Сепаратор Материал
- Мельницы для сверхтонкого измельчения
- Глава XIX
- Классификация и сортировка материалов
- Грохочение
- Гидравлическая классификация и воздушная сепарация
- Глава XX
- 328 Расчет 343
- Основные процессы и аппараты химической технологии