10. Уравнение Бернулли
57
Если умножить левую и правую части уравнения (11,50) на удельный вес жидкости у = р£, то уравнение Бернулли для идеальной жидкости может быть представлено в виде
Р£г1 + Р\ +
рге>\
= Р£2а + Ра +
ря$
(11,50а)
В уравнении (II,50а) каждый член выражает удельную энергию в данной точке, отнесенную не к единице веса, а к единице объема жидкости (1 м3). Например
м-И-Ый-Нт]
В случае горизонтально расположенного трубопровода уравнение Бернулли для идеальной жидкости упрощается:
Рх
Pi
РВ
Рё
(11,51)
Проиллюстрируем применение уравнения Бернулли на примере потока идеальной жидкости, движущейся через произвольно расположенный в пространстве трубопровод переменного сечения (рис. П-15).
Пусть для точек, лежащих на оси трубопровода в поперечных сече- ниях 1—1 и 2—2, нивелирные высоты равны гх и г2 соответственно. Уста-
новим в каждой из этих точек две вертикальные открытые так назы- ваемые пьезометрические т р у б к ,и, у одной из которых нижний конец загнут навстречу по- току жидкости в трубопроводе.
В прямых вертикальных трубках (с незагнутыми нижними концами) жидкость поднимается на высоту, отвечающую гидростатическому дав- лению в точках их погружения, т. е. эти трубки будут измерять пьезо- метрические напоры в соответствую- щих точках.
В трубках с нижними концами, направленными навстречу потоку, уровень жидкости будет выше, чем в соседних вертикальных трубках,
так как трубки с загнутыми концами будут показывать сумму пьезометри- ческого и динамического (скоростного) напоров. Однако, согласно урав- нению (11,49), во всех трубках с загнутыми нижними концами жидкость поднимается на одну и ту же высоту относительно произвольной горизон- тальной плоскости сравнения, равную гидродинамическому напору Н (см. рис. 11-15).
Площадь поперечного сечения 2—2 трубопровода меньше сечения 1—1. Поэтому скорость жидкости ни2 при данном ее расходе, согласно уравне-
нию неразрывности потока, будет больше Соответственно -щ-
В любом поперечном сечении трубопровода скоростной напор можно измерить по разности показаний установленных здесь трубок (с загнутым и прямым нижними концами). Следовательно, эта разность должна быть больше для сечения 2—2, чем для сечения I—/, Вместе с тем из уравнения Бернулли следует, что высота уровня жидкости в прямой трубке в сечении 2—2 должна быть меньше соответствующей высоты в прямой трубке сечения /—1 настолько же, насколько скоростной напор в сечении 2—2 больше, чем в сечении 1—1.
Рис. П-15. К уравнению Бернулли для идеальной жидкости.
58 Гл. Н. Основы гидравлики. Общие вопросы прикладной гидравлики Приведенный пример демонстрирует взаимный переход потенциальной энергии в кинетическую и наоборот при изменении площади сечения трубопровода, а также постоянство суммы этих энергий в любом поперечном сечении трубопровода. При движении реальных жидкостей начинают действовать силы внутреннего трения, обусловленные вязкостью жидкости и режимом ее движения, а также силы трения о стенки трубы. Эти силы оказывают сопротивление движению жидкости. На преодоление возникающего гидравлического сопротивления должна расходоваться некоторая часть энергии потока. Поэтому общее количество энергии потока по длине трубопровода будет непрерывно уменьшаться вследствие перехода потенциальной энергии в потерянную энергию — затрачиваемую на трение и безвозвратно теряемую при рассеивании тепла в окружающую среду. При этом для двух любых сечений 1—1 и 2—2 трубопровода, расположенных по ходу движения реальной жидкости (см. рис. П-15) г1+-^ + -2^>2=+-^+-2|- При движении реальной жидкости высоты ее подъема (относительно плоскости сравнения) в трубках с концами, обращенными навстречу потоку, уже не будут равны в сечениях 1—1 и 2—2, как было показано на рис. 11-15 применительно к движению идеальной жидкости. Разность высот в этих трубках, обусловленная потерями энергии на пути жидкости от сечения 1—1 до сечения 2—2, характеризует потерянный напор Нп. Для соблюдения баланса энергии при движении реальной жидкости в правую часть уравнения (11,50) должен быть введен член, выражающий потерянный напор. Тогда получим уравнение Бернулли для реальных жидкостей; 0л ИЛ п №о Потерянный напор И.П характеризует удельную (т. е. отнесенную к единице веса жидкости) энергию, расходуемую на преодоление гидравлического сопротивления при движении реальной жидкости. Уравнение (11,52) может быть представлено в несколько ином виде, если умножить обе его части на р^: Р а»? P8zi + Pi Ч 2— = Р£22 Ч- РаЧ 2— + д^п (11,52а) В уравнении (II,52а) величина Арп—потерянное давление, равное &Pn — Pghn (II,53) Определение потерь напора или давления является практически важной задачей, связанной с расчетом энергии, которая необходима для перемещения реальных жидкостей при помощи насосов, компрессоров и т. д. Трудность решения этой задачи обусловлена тем, что решение системы дифференциальных уравнений, описывающих движение реальной жидкости, в большинстве случаев оказывается невозможным.
- Scan Pirat
- Глава IV. Перемещение и сжатие газов (компрессорные машины)
- Общие сведения . . .
- Сравнение и области применения компрессорных машин различных
- Глава V. Разделение неоднородных систем 176
- Общие сведения 186
- Общие сведения . 227
- Глава VI. Перемешивание в жидких средах 246
- Общие сведения 246
- Глава VII. Основы теплопередачи в химической аппаратуре 260
- Общие сведения 260
- Глава VIII. Нагревание, охлаждение и конденсация 310
- Общие сведения . 310
- Нагревание газообразными высокотемпературными теплоносителями
- Общие сведения . 347
- Общие сведения 382
- Общие сведения 434
- Глава XV. Сушка . . .Ч 583
- Глава XVI. Кристаллизация 632
- Глава XVII. Искусственное охлаждение 646
- Циклы, основанные на сочетании дросселирования и расширения газа
- Глава XVIII. Измельчение твердых материалов 679
- Общие сведения 679
- Крупное дробление 684
- Тонкое измельчение n 693
- Глава XIX. Классификация и сортировка материалов 703
- Глава XX. Смешение твердых материалов 711
- 2. Возникновение и развитие науки о процессах и аппаратах
- Возникновение и развитие науки о процессах и аппаратах
- 3. Классификация основных процессов
- 4. Общие принципы анализа и расчета процессов и аппаратов
- Общие принципы анализа и расчета процессов и аппаратов
- Основные определения
- Некоторые физические свойства жидкостей
- 2. Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Дифференциальные уравнения равновесия Эйлера
- Основное уравнение гидростатики
- Основное уравнение гидростатики
- Основные характеристики движения жидкостей
- Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
- Уравнение неразрывности (сплошности) потока
- 8. Дифференциальные уравнения движения Эйлера
- 9. Дифференциальные уравнения движения Навье—Стокса
- 9., Дифференциальные уравнения движения Навье—Стокса
- 10. Уравнение Бернулли
- 10. Уравнение Бернулли
- Некоторые практические приложения уравнения Бернулли
- 11. Некоторые практические-приложения уравнения Бернулли
- 12« Основы теории подобия и анализа размерностей.
- 12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
- 12. Основы теории подобия и анализа размерностей. Принципы моделирования п
- Гидродинамическое подобие
- 13. Гидродинамическое подобие
- 13. Гидродинамическое подобия
- 13. Гидродинамическое подобие
- Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- Течение неньютоновских жидкостей
- Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
- Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
- Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
- Называемый пластическо
- Зависимость (11,105) изображается на рис. 11-26 линией 2
- 15. Течение неньютоновских жидкостей
- Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
- Расчет диаметра трубопроводов
- 17. Движение тел в жидкостях
- Движение тел в жидкостях
- 17. Движение тел в жидкостях
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 101
- Движение жидкостей через неподвижные зернистые и пористые слои
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 103
- Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 105
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
- 20. Элементы гидродинамики двухфазных потоков
- Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- Структура потоков и распределение времени пребывания жидкости в аппаратах
- Глава III
- Перемещение жидкостей (насосы)
- Общие сведения
- Основные параметры насосов
- 3. Напор насоса. Высота всасывания
- Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- Поршневые насосы
- 5. Поршневые насосы
- 5. Поршневые насосы
- Специальные типы поршневых и центробежных насосов
- Насосы других типов
- 7. Насосы других типов
- 7. Насосы других типов
- Сравнение и области применения насосов различных типов
- 8. Сравнение и области применения насосов различных типов
- Глава IV
- Перемещение и сжатие газов (компрессорные машины)
- Общие сведения
- 2. Термодинамические основы процесса сжатия газов
- 2.. Термодинамические основы процесса сжатия газов
- 2. Термодинамические основы процесса сжатия газов
- 3. Поршневые компрессоры
- Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 4. Ротационные компрессоры и газодувки
- Ротационные компрессоры и газодувки
- 6. Осевые вентиляторы и компрессоры
- Осевые вентиляторы и компрессоры
- Винтовые компрессоры
- Вакуум-насосы
- 8. Вакуум-насосы
- Глава V
- 1. Неоднородные системы и методы их разделения
- Материальный баланс процесса разделения
- Скорость стесненного осаждения (отстаивания)
- 3. Скорость стесненного осаждения (отстаивания)
- 4. Коагуляция частиц дисперсной фазы
- Коагуляция частиц дисперсной фазы
- Отстойники
- 5. Отстойники
- 5. Отстойники
- Общие сведения
- 6. Общие сведения
- 6. Общие сведения
- Уравнения фильтрования
- 8. Фильтровальные перегородки
- Фильтровальные перегородки
- Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтре*
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 10. Расчет фильтров
- 9. Устройство фильтров
- Основные положения
- 12. Центробежная сила и фактор разделения
- Центробежная сила и фактор разделения
- Процессы в отстойных центрифугах
- Процессы в фильтрующих центрифугах
- Устройство центрифуг
- 16. Расчет центрифуг
- 16. Расчет центрифуг
- 17. Общие сведения
- 17. Общие сведения
- 18. Гравитационная очистка газов
- 2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
- Очистка газов под действием инерционных и центробежных сил
- 20. Очистка газов фильтрованием
- Очистка газов фильтрованием
- Мокрая очистка газов
- 21. Мокрая очистка газов
- Электрическая очистка газов
- 22. Электрическая очистка газов
- 22. Электрическая очистка газов
- 23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
- Коагуляция и укрупнение частиц, отделяемых при газоочистке
- 24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
- Глава VI
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 3. Механические перемешивающие устройства
- 3. Механические перемешивающие устройства
- Пневматическое перемешивание
- 5. Перемешивание в трубопроводах
- Перемешивание в трубопроводах
- 6. Перемешивание с помощью сопел и насосов
- 2. Тепловые балансы
- Тепловые балансы
- Основное уравнение теплопередачи
- 4. Температурное поле и температурный градиент
- Температурное поле и температурный градиент
- Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- Тепловое излучение
- 6. Тепловое излучение
- 6. Тепловое излучение
- 7. Передача тепла конвекцией (конвективный теплообмен)
- Передача тепла конвекцией (конвективный теплообмен)
- 7. Передача тепла конвекцией (конвективный теплообмен) 277
- 7. Передача тепла конвекцией (конвективный теплообмен) 279
- 8. Опытные данные по теплоотдаче
- Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 10. Сложная теплоотдача
- Численные значения коэффициентов теплоотдачи
- Сложная теплоотдача
- Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 12., Нестационарный теплообмен
- 12. Нестационарный теплообмен
- Дгср _ ——-f - j_t -
- 12. Нестационарный теплообмен
- Глава VIII нагревание, охлаждение и конденсация
- Общие сведения
- Нагревание водяным паром
- Центробежный насос.
- 4. Нагревание топочными газами
- Нагревание горячей водой
- Нагревание топочными газами
- 1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
- Нагревание высокотемпературными теплоносителями
- I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
- Нагревание электрическим током
- Охлаждение до обыкновенных температур
- Охлаждение до низких температур
- Конденсация паров
- Трубчатые теплообменники
- Змеевиковые теплообменники
- Пластинчатые теплообменники
- Оребренные теплообменники
- 16. Теплообменные устройства реакционных аппаратов
- Конденсаторы смешения
- Расчет теплообменных аппаратов
- Расчет конденсаторов паров
- Глава IX
- Общие сведения
- Однокорпусные выпарные установки
- 2. Однокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Многокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Устройство выпарных аппаратов
- Расчет многокорпусных выпарных аппаратов
- Общие сведения
- 1. Общие сведения
- Равновесие при массопередаче
- Скорость массопередачи
- 3. Скорость массопередачи
- Движущая сила процессов массопередачи
- Массопередача с твердой фазой
- 6. Массопередача с твердой фазой
- Глава XI
- Равновесие при абсорбции
- Материальный и тепловой балансы процесса
- Скорость процесса
- Устройство абсорбционных аппаратов
- — Щели.
- Расчет абсорберов
- 7. Десорбция
- 8. Схемы абсорбционных установок
- Глава XII
- Характеристики двухфазных систем жидкость—пар
- 4. Ректификация
- 4. Ректификация
- Специальные виды перегонки
- Глава XIII
- Общие сведения
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 1/ 2, 8, .... П — ступени.
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 4. Устройство экстракционных аппаратов
- Ступенчатые экстракторы
- 4. Устройство экстракционных аппаратов
- 4. Устройство экстракционных аппаратов
- 1Л. XIII. Экстракция
- 4. Устройство экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 7. Равновесие и скорость процессов экстракции и растворения
- Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
- Способы экстракции и растворения
- 8. Способы экстракции и растворения
- Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
- Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- Расчет экстракционных аппаратов
- Глава XIV
- Общие сведения
- 2. Характеристики адсорбентов и их виды
- Равновесий при адсорбции
- 3. Равновесие при адсорбции
- Скорость адсорбции
- 4. Скорость адсорбции
- 4. Скорость адсорбции
- Десорбция
- 5. Десорбция
- 6. Устройство адсорберов и схемы адсорбционных установок
- 6. Устройство адсорберов и схемы адсорбционных установок
- Расчет адсорберов
- 7. Расчет адсорберов
- Ионообменные процессы
- Глава XV
- Основные параметры влажного газа
- Равновесие при сушке
- Материальный и тепловой балансы сушки
- Определение расходов воздуха и тепла на сушку
- Варианты процесса сушки
- Скорость сушки
- 8. Скорость сушки
- Dwc cftuiP
- Устройство суЬшлок
- Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- Конвективные сушилки с перемешиванием слоя материала
- Конвективные сушилки со взвешенным слоем материала
- 1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
- I камера сушилки; 2 — полые плиты.
- Глава XVI
- 1, Общие сведения
- Равновесие при кристаллизации
- Влияние условий кристаллизации на свойства кристаллов
- Способы кристаллизации
- Устройство кристаллизаторов
- I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
- 7. Расчеты кристаллизаторов Материальный баланс кристаллизации
- Глава XVII искусственное охлаждение
- Общие сведения
- Термодинамические основы получения холода
- Другие методы получения низких температур
- Компрессионные паровые холодильные машины
- Абсорбционные холодильные машины
- Пароводяные эжекторные холодильные машины
- Циклы с дросселированием газа
- Циклы с тепловым насосом
- Сравнение основных циклов глубокого охлаждения
- Методы разделения газов
- Механические процессы
- Глава XVIII измельчение твердых материалов
- Общие сведения
- Физико-механические основы измельчения.
- Щековые дробилки
- Конусные дробилки
- Валковые дробилки
- Ударно-центробежные дробилки
- Барабанные мельницы
- Кольцевые мельницы
- 8 Сепаратор Материал
- Мельницы для сверхтонкого измельчения
- Глава XIX
- Классификация и сортировка материалов
- Грохочение
- Гидравлическая классификация и воздушная сепарация
- Глава XX
- 328 Расчет 343
- Основные процессы и аппараты химической технологии