КАСАТКИН
Грохочение
Процесс разделения сыпучих материалов на классы по крупности путем просеивания через одно или несколько сит называется грохочением.
Сита и ситовый анализ. Основной частью аппаратов для грохочения (грохотов) является рабочая поверхность, изготовляемая в виде проволочных сеток (сит), стальных перфорированных листов (решет) или параллельных стержней (колосников).
Проволочные сита изготовляются из сеток с квадратными или прямоугольными отверстиями размером от 100 до 0,4 мм. Согласно ГОСТ 3584—53, сита обозначаются номерами, соответствующими размеру стороны отверстия сетки в свету, выраженному в миллиметрах. Размеры ячеек сеток стандартизованы в соответствии с нормальным рядом чисел в машиностроении.
За рубежом распространен, а иногда применяется и в отечественной практике, способ выражения величины отверстий сетки числом «меш», т. е. числом отверстий, приходящихся на один линейный дюйм (25,4 мм) сетки. Кроме того, иногда сита обозначают по числу отверстий на 1 см3 сетки. Оба эти способа непосредственно не определяют размера ячейки сетки, так как он зависит от толщины проволоки.
Решета — стальные листы толщиной 3—12 мм с проштампованными или просверленными отверстиями размером 5—50 мм. При штамповке отверстия получаются расширяющимися по толщине листа сверху вниз, что уменьшает возможность их забивания материалом.
Колосники — стержни, обычно трапециевидного сечения. Для колосниковых решеток иногда используют старые рельсы со срезанной подошвой.
Определение гранулометрического состава сыпучего материала, т. е. определение содержания в нем частиц различных размеров, называется
704
Гл. XIX. Классификация и сортировка материалов
ситовым анализом. При выполнении ситового анализа прово- дится рассев средней пробы материала. Для рассева применяют набор проволочных сит с постоянным отношением (модулем) размера отверстий
каждого сита к последующему, равным ]/2 (или У2 для более подроб- ного ситового анализа).
После просеивания взвешивают остатки материала на каждом из сит, а также зерна, прошедшие через самое тонкое (нижнее) сито. Отношение количеств полученных остатков на ситах к навеске исходного материала показывает содержание различных классов зерен в материале, т. е. зерен, размеры которых ограничены верхним и нижним пределами, соот- ветствующими размерам отверстий верхнего и нижнего соседних сит.
Классы зерен обозначают размерами отверстий этих сит, соответству- ющими предельным размерам зерен данного класса. Если, например, зерна получены последовательным просеиванием на ситах № 2 и № 1, т. е. с отверстиями 2 и 1 мм, то класс зерен обозначают следующим обра- зом: —2 + 1 мм.
Графическое изображение состава сыпучего материала в координатах содержание (выход) зерен данного класса — номера сит называется характеристикойкрупности.
На основании данных ситового анализа могут быть построены кривые распределения. На оси абсцисс графика последовательно откладывают размеры зерен материала по классам, на оси ординат — число или массу зерен данного класса, отнесенные к интервалу крупности зерен этого класса.
Кривая распределения, или характеристика крупности, определяет гранулометрический состав сыпучего материала, пред- ставляющего собой статистическую совокупность зерен разной крупности.
Способы грохочения. Классификация по крупности на грохоте про- исходит при относительном движении материала и рабочей поверхности грохота. В результате получают два продукта: куски (зерна), прошедшие через сито — просев (подрешеточный продукт) и куски (зерна), оставшиеся на сите — отсев (надрешеточный продукт). Работа грохо- тов оценивается двумя показателями: эффективностью грохочения и производительностью грохота.
Эффективностью грохочения называется выраженное в процентах или долях единицы отношение массы подрешеточного про- дукта к массе нижнего класса в исходном материале (нижний класс — материал, крупность которого меньше, чем размер отверстий сита грохота).
Согласно определению, эффективность грохочения равна (в %):
.100=^.10* (XIX,1)
£?а ТОО
где С — масса подрешеточного продукта; <3 — масса исходного материала; а — содержание нижнего класса н исходном материале, %.
Материальный баланс по нижнему классу (без учета потерь материала):
<3« _ г , Ту 100 ^ 100
где Т — масса надрешеточного продукта; V — содержание иижнего класса в надрешеточ- ном продукте, %.
Учитывая, что Т = <5 — С (согласно материальному балансу грохота), последнее уравнение можно представить в виде
С2а= 100С-{-(<3— С)у
откуда
С а — V ТГ ~ 100 —V
10. Грохочение
705
)
Заменяя отношение С/О. в выражении (XIX, 1) найденным его значением, окончательно получим (в %):
_?-£_) .10» (XIX,2)
Величины а и V определяют рассевом проб материала.
Производительность грохота зависит от физических свойств материала (плотности, формы и размера зерен, влажности), размеров сита, относительной скорости движения материала, способа его подачи, толщины слоя материала на сите и других факторов и нахо- дится по эмпирическим уравнениям, приводимым в специальной лите-
ратуре.
При грохочении с выделением зерен более двух классов применяется многократное гро- хочение, осуществляемое по одному из трех способов (рис. Х1Х-1):
от мелкого к крупному — через последова- тельный ряд сит с увеличивающимися размерами отверстий;
от крупного к мелкому — через расположен- ные друг над другом сита с уменьшающимися раз- мерами отверстий;
комбинированный.
Достоинствами грохочения по первому способу являются: удобство смены сит и наблюдения за их состоянием; рассредоточенность разгрузки классов по длине сит, облегчающая распределение классов.
Недостатки этого способа грохочения: пониженная эффективность разделения, так как вся масса ма- териала загружается на сито с самыми мелкими отверстиями, которые перекрываются крупными кусками; перегрузка и повышенный износ мелких сит; значительное крошение хрупкого материала.
Достоинствами грохочения по второму способу являются: более высокая эффективность грохоче- ния, меньший износ сит вследствие первоначального
отсева крупных кусков, меньшее крошение материала, компактность установки. К недостаткам этой схемы следует отнести: разгрузку материала всех классов у одного конца грохота и сложность ремонта и смены сит.
Недостатки первых двух способов грохочения частично преодолеваются при грохочении комбинированным способом.
Устройство грохотов. Грохоты разделяются на две группы: непо- движные и подвижные. По форме просеивающей поверхности различают плоские и цилиндрические (барабанные) гро- хоты. В зависимости от расположения грохоты делятся на наклон- ные и горизонтальные.
Плоским неподвижным грохотом является колосниковая решетка, которая устанавливается с наклоном 30—50°. Такие гро- хоты применяются для крупного грохочения (размер щели между колос- никами не менее 50 мм).
К грохотам с подвижными колосниками относятся валковые грохоты, просеивающей поверхностью которых являются диски, насаженные на вращающиеся горизонтальные валы, установленные парал- лельно друг другу. Рассеиваемый материал движется по дискам, при этом просев проваливается в зазоры между дисками, а отсев разгружается в конце грохота. Эти грохоты более производительны и по сравнению с неподвижными колосниковыми грохотами обеспечивают повышенную
23 А. Р. Касаткии
Рнс.
в
XІX -1. Способы грохочения:
а — от мелкого к крупному; б — от крупного к мелкому; в — комбинированный.
706
Гл. XIX. Классификация и сортировка материалов
эффективность грохочения. Износ дисков — основной недостаток этих грохотов.
В барабанный грохот (рис. Х1Х-2) материал загружается с верхнего конца барабана 1, а подрешеточный продукт разгружается через отверстия в барабане, вращающемся на центральном валу 2. Ось барабана наклонена к горизонту под углом 4—7°. Барабанные грохоты используются и для грохочения от мелкого к крупному, при этом сито барабана собирается из нескольких секций с отверстиями, увеличивающимися по направлению к разгрузочному концу. Реже применяются призматические барабанные грохоты, называемые буратами.
Главное достоинство барабанных грохотов — простота конструкции и равномерность работы. Недостатками являются громоздкость, малая удельная производительность и низкая эффективность, особенно при грохочении мелкого материала. Вследствие этих недостатков барабанные грохоты во многих случаях заменяются плоскими качающимися и вибрационными.
Рис. ХІХ-2. Схема барабанного Рис. ХІХ-3. Схема качающегося грохота:
Просеивающая поверхность качающихся грохотов (рис. Х1Х-3) совершает принудительные качания, обусловленные жесткой кинематической связью приводного эксцентрика /• с корпусом 2, закрепленным на шарнирных или жестких опорных стойках 3. Характер движения материала на этом грохоте определяется эксцентриситетом и скоростью вращения вала (в минг 1), которая рассчитывается по формуле:
где а — угол наклона короба грохота; г — радиус кривошипа (эксцентриситет), мм.
Достоинства плоских качающихся грохотов: большие чем у барабанных грохотов производительность и эффективность грохочения; компактность и удобство обслуживания; незначительное крошение материала. Основные недостатки — неуравновешенность конструкции и быстрый выход из строя опорных стоек грохота.
■ Основной частью г и р а ц и о.н
ного (полувиб рационного) грохота (рис. Х1Х-4) является короб 1 с одним или двумя Ситами 2, совершающий в вертикальной плоскости круговые движения с помощью эксцентрикового вала 3. Сито грохота за оборот вала перемещается параллельно самому себе. Концы корпуса сит соединяются с неподвижной рамой 4 пружинными амортизаторами 5. Центробежные силы инерции, возникающие при движении корпуса, уравновешиваются контргрузами 6 на симметрично расположенных дисках 7.
Спокойная работа вследствие уравновешенности конструкции, высокие производительность и эффективность грохочения — основные достоинства полувибрационных грохотов. Наличие четырех подшипников вибратора (эксцентрикового вала) усложняет конструкцию, сборку и ремонт грохота.
грохота:
1 — барабан; 2 — центральный вал.
1 *— эксцентрик: 2 —• корпус; 8 — опорная стойка.
Vг ща.
(XIX,3)
11. Гидравлическая классификация и воздушная сепарация
707
Широкое распространение в настоящее время получили вибра- ционные грохоты, которые в зависимости от принципа работы вибратора делятся на инерционные и электромагнит- н ы е.
На рис. Х1Х-5 показана схема инерционного вибрационного грохота. Вибрация корпуса 1 происходит вследствие неуравновешенности масс вращающихся дебалансов 2. Сортируемый материал непрерывно подбра- сывается на сите 3, при этом мелкие куски проваливаются через отверстия
Я Д-Д
Рис. ХІХ-4. Схема гирационного грохота:
1 — короб; 2 — сита; 3 — эксцентриковый вал; 4 — рама; 5 — амортизатор: 6 — контргруз; 7 — диск.
сит, крупные — перемещаются к нижнему концу короба. Амплитуда колебаний грохбта зависит от количества материала на сите, поэтому вал 4 в процессе работы смещается от своего первоначального положения. Равномерное питание материалом вибрационных грохотов — основное условие их нормальной работы.
В электромагнитных вибрационных грохотах источником колебаний является движение якоря электромагнита, через обмотку которого пропускается переменный ток. Якорь электромагнита связан с корпусом грохота, подвешенным на пружинных амортизаторах.
Рис. Х1Х-5. Схема вибрационного грохота:
1 :— корпус; 2 — дебалансы; 3 — сито; 4 — вал.
Вибрационные грохоты широко используются в промышленности. Их достоинствами являются: высокая производительность и эффективность грохочения; значительно меньшая возможность забивания отверстий сит по сравнению с грохотами других типов; пригодность для крупного и тонкого грохочения; компактность и легкость смены сит; относительно небольшой расход энергии.
-
Yandex.RTB R-A-252273-3
Содержание
-
Scan Pirat
-
Глава IV. Перемещение и сжатие газов (компрессорные машины)
-
Общие сведения . . .
-
Сравнение и области применения компрессорных машин различных
-
Глава V. Разделение неоднородных систем 176
-
Общие сведения 186
-
Общие сведения . 227
-
Глава VI. Перемешивание в жидких средах 246
-
Общие сведения 246
-
Глава VII. Основы теплопередачи в химической аппаратуре 260
-
Общие сведения 260
-
Глава VIII. Нагревание, охлаждение и конденсация 310
-
Общие сведения . 310
-
Нагревание газообразными высокотемпературными теплоносителями
-
Общие сведения . 347
-
Общие сведения 382
-
Общие сведения 434
-
Глава XV. Сушка . . .Ч 583
-
Глава XVI. Кристаллизация 632
-
Глава XVII. Искусственное охлаждение 646
-
Циклы, основанные на сочетании дросселирования и расширения газа
-
Глава XVIII. Измельчение твердых материалов 679
-
Общие сведения 679
-
Крупное дробление 684
-
Тонкое измельчение n 693
-
Глава XIX. Классификация и сортировка материалов 703
-
Глава XX. Смешение твердых материалов 711
-
2. Возникновение и развитие науки о процессах и аппаратах
-
Возникновение и развитие науки о процессах и аппаратах
-
3. Классификация основных процессов
-
4. Общие принципы анализа и расчета процессов и аппаратов
-
Общие принципы анализа и расчета процессов и аппаратов
-
Основные определения
-
Некоторые физические свойства жидкостей
-
2. Некоторые физические свойства жидкостей
-
Некоторые физические свойства жидкостей
-
Некоторые физические свойства жидкостей
-
Дифференциальные уравнения равновесия Эйлера
-
Основное уравнение гидростатики
-
Основное уравнение гидростатики
-
Основные характеристики движения жидкостей
-
Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
-
Уравнение неразрывности (сплошности) потока
-
8. Дифференциальные уравнения движения Эйлера
-
9. Дифференциальные уравнения движения Навье—Стокса
-
9., Дифференциальные уравнения движения Навье—Стокса
-
10. Уравнение Бернулли
-
10. Уравнение Бернулли
-
Некоторые практические приложения уравнения Бернулли
-
11. Некоторые практические-приложения уравнения Бернулли
-
12« Основы теории подобия и анализа размерностей.
-
12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
-
12. Основы теории подобия и анализа размерностей. Принципы моделирования п
-
Гидродинамическое подобие
-
13. Гидродинамическое подобие
-
13. Гидродинамическое подобия
-
13. Гидродинамическое подобие
-
Гидравлические сопротивления в трубопроводах
-
14. Гидравлические сопротивления в трубопроводах
-
14. Гидравлические сопротивления в трубопроводах
-
Течение неньютоновских жидкостей
-
Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
-
Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
-
Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
-
Называемый пластическо
-
Зависимость (11,105) изображается на рис. 11-26 линией 2
-
15. Течение неньютоновских жидкостей
-
Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
-
Расчет диаметра трубопроводов
-
17. Движение тел в жидкостях
-
Движение тел в жидкостях
-
17. Движение тел в жидкостях
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 101
-
Движение жидкостей через неподвижные зернистые и пористые слои
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 103
-
Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 105
-
19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
-
19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
-
20. Элементы гидродинамики двухфазных потоков
-
Элементы гидродинамики двухфазных потоков
-
20. Элементы гидродинамики двухфазных потоков
-
20. Элементы гидродинамики двухфазных потоков
-
Структура потоков и распределение времени пребывания жидкости в аппаратах
-
Глава III
-
Перемещение жидкостей (насосы)
-
Общие сведения
-
Основные параметры насосов
-
3. Напор насоса. Высота всасывания
-
Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
Поршневые насосы
-
5. Поршневые насосы
-
5. Поршневые насосы
-
Специальные типы поршневых и центробежных насосов
-
Насосы других типов
-
7. Насосы других типов
-
7. Насосы других типов
-
Сравнение и области применения насосов различных типов
-
8. Сравнение и области применения насосов различных типов
-
Глава IV
-
Перемещение и сжатие газов (компрессорные машины)
-
Общие сведения
-
2. Термодинамические основы процесса сжатия газов
-
2.. Термодинамические основы процесса сжатия газов
-
2. Термодинамические основы процесса сжатия газов
-
3. Поршневые компрессоры
-
Поршневые компрессоры
-
3. Поршневые компрессоры
-
3. Поршневые компрессоры
-
3. Поршневые компрессоры
-
4. Ротационные компрессоры и газодувки
-
Ротационные компрессоры и газодувки
-
6. Осевые вентиляторы и компрессоры
-
Осевые вентиляторы и компрессоры
-
Винтовые компрессоры
-
Вакуум-насосы
-
8. Вакуум-насосы
-
Глава V
-
1. Неоднородные системы и методы их разделения
-
Материальный баланс процесса разделения
-
Скорость стесненного осаждения (отстаивания)
-
3. Скорость стесненного осаждения (отстаивания)
-
4. Коагуляция частиц дисперсной фазы
-
Коагуляция частиц дисперсной фазы
-
Отстойники
-
5. Отстойники
-
5. Отстойники
-
Общие сведения
-
6. Общие сведения
-
6. Общие сведения
-
Уравнения фильтрования
-
8. Фильтровальные перегородки
-
Фильтровальные перегородки
-
Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтре*
-
9. Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтров
-
10. Расчет фильтров
-
9. Устройство фильтров
-
Основные положения
-
12. Центробежная сила и фактор разделения
-
Центробежная сила и фактор разделения
-
Процессы в отстойных центрифугах
-
Процессы в фильтрующих центрифугах
-
Устройство центрифуг
-
16. Расчет центрифуг
-
16. Расчет центрифуг
-
17. Общие сведения
-
17. Общие сведения
-
18. Гравитационная очистка газов
-
2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
-
Очистка газов под действием инерционных и центробежных сил
-
20. Очистка газов фильтрованием
-
Очистка газов фильтрованием
-
Мокрая очистка газов
-
21. Мокрая очистка газов
-
Электрическая очистка газов
-
22. Электрическая очистка газов
-
22. Электрическая очистка газов
-
23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
-
Коагуляция и укрупнение частиц, отделяемых при газоочистке
-
24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
-
Глава VI
-
2. Механическое перемешивание
-
2. Механическое перемешивание
-
2. Механическое перемешивание
-
3. Механические перемешивающие устройства
-
3. Механические перемешивающие устройства
-
Пневматическое перемешивание
-
5. Перемешивание в трубопроводах
-
Перемешивание в трубопроводах
-
6. Перемешивание с помощью сопел и насосов
-
2. Тепловые балансы
-
Тепловые балансы
-
Основное уравнение теплопередачи
-
4. Температурное поле и температурный градиент
-
Температурное поле и температурный градиент
-
Передача тепла теплопроводностью
-
5. Передача тепла теплопроводностью
-
5. Передача тепла теплопроводностью
-
Тепловое излучение
-
6. Тепловое излучение
-
6. Тепловое излучение
-
7. Передача тепла конвекцией (конвективный теплообмен)
-
Передача тепла конвекцией (конвективный теплообмен)
-
7. Передача тепла конвекцией (конвективный теплообмен) 277
-
7. Передача тепла конвекцией (конвективный теплообмен) 279
-
8. Опытные данные по теплоотдаче
-
Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
10. Сложная теплоотдача
-
Численные значения коэффициентов теплоотдачи
-
Сложная теплоотдача
-
Теплопередача
-
11. Теплопередача
-
11. Теплопередача
-
11. Теплопередача
-
12., Нестационарный теплообмен
-
12. Нестационарный теплообмен
-
Дгср _ ——-f - j_t -
-
12. Нестационарный теплообмен
-
Глава VIII нагревание, охлаждение и конденсация
-
Общие сведения
-
Нагревание водяным паром
-
Центробежный насос.
-
4. Нагревание топочными газами
-
Нагревание горячей водой
-
Нагревание топочными газами
-
1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
-
Нагревание высокотемпературными теплоносителями
-
I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
-
Нагревание электрическим током
-
Охлаждение до обыкновенных температур
-
Охлаждение до низких температур
-
Конденсация паров
-
Трубчатые теплообменники
-
Змеевиковые теплообменники
-
Пластинчатые теплообменники
-
Оребренные теплообменники
-
16. Теплообменные устройства реакционных аппаратов
-
Конденсаторы смешения
-
Расчет теплообменных аппаратов
-
Расчет конденсаторов паров
-
Глава IX
-
Общие сведения
-
Однокорпусные выпарные установки
-
2. Однокорпусные выпарные установки
-
3. Многокорпусные выпарные установки
-
Многокорпусные выпарные установки
-
3. Многокорпусные выпарные установки
-
Устройство выпарных аппаратов
-
Расчет многокорпусных выпарных аппаратов
-
Общие сведения
-
1. Общие сведения
-
Равновесие при массопередаче
-
Скорость массопередачи
-
3. Скорость массопередачи
-
Движущая сила процессов массопередачи
-
Массопередача с твердой фазой
-
6. Массопередача с твердой фазой
-
Глава XI
-
Равновесие при абсорбции
-
Материальный и тепловой балансы процесса
-
Скорость процесса
-
Устройство абсорбционных аппаратов
-
— Щели.
-
Расчет абсорберов
-
7. Десорбция
-
8. Схемы абсорбционных установок
-
Глава XII
-
Характеристики двухфазных систем жидкость—пар
-
4. Ректификация
-
4. Ректификация
-
Специальные виды перегонки
-
Глава XIII
-
Общие сведения
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
3. Методы экстракции
-
3. Методы экстракции
-
3. Методы экстракции
-
1/ 2, 8, .... П — ступени.
-
3. Методы экстракции
-
3. Методы экстракции
-
3. Методы экстракции
-
4. Устройство экстракционных аппаратов
-
Ступенчатые экстракторы
-
4. Устройство экстракционных аппаратов
-
4. Устройство экстракционных аппаратов
-
1Л. XIII. Экстракция
-
4. Устройство экстракционных аппаратов
-
5. Расчет экстракционных аппаратов
-
5. Расчет экстракционных аппаратов
-
7. Равновесие и скорость процессов экстракции и растворения
-
Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
-
Способы экстракции и растворения
-
8. Способы экстракции и растворения
-
Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
-
Устройство экстракционных аппаратов
-
9. Устройство экстракционных аппаратов
-
9. Устройство экстракционных аппаратов
-
Расчет экстракционных аппаратов
-
Глава XIV
-
Общие сведения
-
2. Характеристики адсорбентов и их виды
-
Равновесий при адсорбции
-
3. Равновесие при адсорбции
-
Скорость адсорбции
-
4. Скорость адсорбции
-
4. Скорость адсорбции
-
Десорбция
-
5. Десорбция
-
6. Устройство адсорберов и схемы адсорбционных установок
-
6. Устройство адсорберов и схемы адсорбционных установок
-
Расчет адсорберов
-
7. Расчет адсорберов
-
Ионообменные процессы
-
Глава XV
-
Основные параметры влажного газа
-
Равновесие при сушке
-
Материальный и тепловой балансы сушки
-
Определение расходов воздуха и тепла на сушку
-
Варианты процесса сушки
-
Скорость сушки
-
8. Скорость сушки
-
Dwc cftuiP
-
Устройство суЬшлок
-
Конвективные сушилки с неподвижным или движущимся плотным слоем материала
-
Конвективные сушилки с перемешиванием слоя материала
-
Конвективные сушилки со взвешенным слоем материала
-
1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
-
I камера сушилки; 2 — полые плиты.
-
Глава XVI
-
1, Общие сведения
-
Равновесие при кристаллизации
-
Влияние условий кристаллизации на свойства кристаллов
-
Способы кристаллизации
-
Устройство кристаллизаторов
-
I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
-
7. Расчеты кристаллизаторов Материальный баланс кристаллизации
-
Глава XVII искусственное охлаждение
-
Общие сведения
-
Термодинамические основы получения холода
-
Другие методы получения низких температур
-
Компрессионные паровые холодильные машины
-
Абсорбционные холодильные машины
-
Пароводяные эжекторные холодильные машины
-
Циклы с дросселированием газа
-
Циклы с тепловым насосом
-
Сравнение основных циклов глубокого охлаждения
-
Методы разделения газов
-
Механические процессы
-
Глава XVIII измельчение твердых материалов
-
Общие сведения
-
Физико-механические основы измельчения.
-
Щековые дробилки
-
Конусные дробилки
-
Валковые дробилки
-
Ударно-центробежные дробилки
-
Барабанные мельницы
-
Кольцевые мельницы
-
8 Сепаратор Материал
-
Мельницы для сверхтонкого измельчения
-
Глава XIX
-
Классификация и сортировка материалов
-
Грохочение
-
Гидравлическая классификация и воздушная сепарация
-
Глава XX
-
328 Расчет 343
-
Основные процессы и аппараты химической технологии
Yandex.RTB R-A-252273-4