Движение тел в жидкостях
Сопротивление движению тел в жидкостях. Проведение ряда процессов химической технологии связано с движением твердых тел в капельных жидкостях или газах. К таким процессам относятся, например, осаждение твердых частиц из суспензий и пылей под действием сил тяжести и инерционных (например, центробежных) сил, механическое перемешивание в жидких средах' и др. Как отмечалось, изучение закономерносте й, этих процессов составляет внешнюю задачу гидродинамики.
При движении тела в жидкости (или при обтекании неподвижного тела движущейся жидкостью) возникают сопротивления, для преодоления которых и обеспечения равномерного движения тела должна быть затрачена определенная энергия. Возникающее сопротивление зависит главным образом от режима движения и формы обтекаемого тела.
* Амортизационные расходы получают делением общей стоимости сооружения трубопровода (капитальных затрат) на предусмотренное число лет его работы.
96 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлики При ламинарном движении, наблюдающемся при небольших скоростях и малых размерах тел или при высокой вязкости среды, тело окружено пограничным слоем жидкости и плавно обтекается потоком (рис. 11-29, а). Потеря энергии в таких условиях связана в основном лишь с преодолением сопротивлений трения. С развитием турбулентности потока (например, с увеличением скорости движения тела) все большую роль начинают играть силы инерции. Под действием этих сил пограничный слой отрывается от поверхности тела, что приводит к понижению давления за движущимся телом в непосредственной близости от него и к образованию беспорядочных местных завихрений в данном пространстве (рис. П-29, б). При этом разность давлений жидкости на переднюю (лобовую) поверхность тела, встречающую обтекающий поток, и на его заднюю (кормовую) поверхность все больше превышает разность давлений, возникающую при ламинарном обтекании тела. Начиная с некоторых значений критерия Рейнольдса, роль лобового сопротивления становится преобладающей, а сопротивлением трения можно практически пренебречь. В данном случае, как и при движении жидкости по трубам, наступает автомодельный (по отношению к критерию Рейнольдса) режим. Сила сопротивления /?(«) среда движущемуся в ней телу может быть выражена уравнением закона сопротивления: Отношение R/S представляет собой перепад давлений Ар (н/м2), преодолеваемый движущимся телом'. Поэтому, решив уравнение (II, 111) относительно £, можно установить, что коэффициент сопротивления t пропорционален критерию Эйлера Eu = (Ç отличается от Eu лишь множителем 2). Соответственно уравнения для расчета £ при различных гидродинамических режимах могут быть получены обработкой опытных данных в виде обобщенных зависимостей между критериями гидродинамического подобия. На рис. II-30 представлена зависимость £ от критерия Рейнольдса при движении шарообразных частиц диаметром d. Этот диаметр и является определяющим размером в критерии Re. Из графика видно, что существуют три различных режима движения, каждому из которых соответствует определенный характер зависимости £ от Re: Рис. П-29. Движение твердого тела в жидкости: а — ламинарный потоку б — турбулентный поток. Рис. 11-30. Зависимость £ от критерия Яе при движении тел шарообразной формы в жидкостях. (И,111)где S — площадь проекции тела на плоскость, перпендикулярную направлению его движения, м2; w — скорость, м/сек4, р — плотность среды, кг/м3; £—коэффициент сопротивления среды.
17. Движение тел в жидкосггшх 97 ламинарный режим (область действия закона Стокса) приблизительно при Не,<52 переходный режим при Re = 2—500 автомодельный режим (область действия квадратичного закона сопротивления Ньютона) при ~2-105 >> Re > ~500 Подстановка в уравнение (11,111) каждого из приведенных выше уравнений для £ показывает, что при ламинарном режиме сила сопротивления пропорциональна скорости в первой степени, т. е. R ~ w, при переходном режиме R ~ си1-4, а при автомодельном режиме R ~ w2. При движении тел, отличающихся по форме от шара, значения коэффициента сопротивления больше и зависят не только от Критерия Re, но и от фактора ф о р м ы Ф, т. е. Здесь Ф = ф- (11,114) г где FllI — поверхность шара, имеющего тот же объем, что и рассматриваемое тело поверхностью /ч Например, для куба Ф = 0,806; для цилиндра высотой, в 10 раз превышающей его радиус, Ф = 0,69; для диска, высота которого в 10 раз меньше радиуса, Ф = 0,32. Значения Ф приводятся в справочниках. Для тел нешарообразной формы определяющим линейным размером в критерии Re служит диаметр эквивалентного шара й, равный диаметру шара, имеющего тя-ой же объем, что и данное тело. Если объем тела V, его масса т, а плотность рт, то лначение й может быть найдено из соотношения .. т__ я с1~ р7~~6~ Осаждение частиц под действием силы тяжести. Рассмотрим движение тела в жидкости на примере осаждения твердой частицы в неподвижной среде под действием силы тяжести. Другой пример, связанный с анализом движения в жидкостях механических мешалок, приведен в главе VI. Если частица массой т (и весом тц) начинает падать под действием силы собственного веса, то скорость ее движения первоначально возрастает со временем. При полном отсутствии сопротивления среды скорость да менялась бы во времени по известному закону т — ^т. Однако с увеличением скорости будет расти, согласно уравнению (11,111), сопротивление движению частицы и соответственно »уменьшаться ее ускорение. В результате через короткий промежуток времени наступит равновесие: сила тяжести, под действием которой частица движется, станет равна силе сопротивления среды. Начиная с этого момента, ускорение движения будет равно нулю и частица станет двигаться равномерно — с постоянной А. Г. Касаткин£=^01 (II,112а)£ = 0,44 = const (11,1126)С — / (Re, Ф) (П.113)Надо заметить, что на самом деле роль фактора формы не всегда может быть сведена лишь к соотношению поверхностей. Поэтому наиболее надежные данные о численных значениях Ф для тел различной формы получаются экспериментально.
98 Гл. //. Основы гидравлики. Общие вопросы прикладной гидравлики скоростью. Скорость такого равномерного движения частицы в среде называют скоростью осаждения и обозначают символом 12>ос. Сила, движущая шарообразную частицу диаметром й, выражается разностью между ее весом и выталкивающей архимедовой силой, равной весу жидкости (среды) в объеме частицы: я<*3 . . Сила сопротивления среды, в соответствии с уравнением (11,111) Я—£ 4 • 2 Скорость осаждения ш0с можно найти из условия равенства силы, движущей частицу, и силы сопротивления среды: яс/3£ пй2 РШ0С -6^(Рт-Р) = С-4 2 откуда Шос Значение коэффициента сопротивления £ может быть определено по одной из зависимостей— (11,112), (11,112а) или (11,1126). При подстановке в уравнение (11,115) выражения (11,112) для ламинарной области находим формулу яс13 -уё (Рт — Р) = Зяйцшос Максимальный размер частиц, осаждение которых происходит по закону Стокса, можно найти, подставив в уравнение (11,116) вместо ско- _ ц Не рости осаждения ее выражение через критерии Рейнольдса 1&>ос = и приняв Ие = 2, т. е. — предельному значению Ие для ламинарной области. Тогда У Р£(Рт —Р) У Р(Рт—Р) Существует и минимальный размер частиц, ниже которого наблюдаются отклонения от закона Стокса. Нижний предел применимости закона Стокса соответствует Ке «=< 10~4. При Ке 10-4 на скорость осаждения очень мелких частиц начинает влиять тепловое движение молекул среды. В таких условиях размеры й частиц становятся соизмеримыми со средней длиной л свободного пробега молекул среды. При этом скорость осаждения оказывается ниже рассчитанной по уравнению (11,116). Поэтому величину -л'ос, определенную по уравнению (11,116), следует разделить на поправочный коэффициент X
£(Рт — Р)где рт — плотность твердой частицы; р — плотность среды.■= у ----^тр~Р)' (П,115)Шос= (И,116)где (г — вязкость среды.Это же уравнение можно получить и при использовании выражения закона Стокса, согласно которому сопротивление среды при осаждении в ней мелких частиц выражается зависимостьюЯ = 4я йцаиос (11,117)Приравниваем действующую силу силе сопротивления средын, определив из этого выражения шос, получаем уравнение (11,116).^шах = •»/—■36Ц* —-я»1,56 т/ £ (П.118)
- Scan Pirat
- Глава IV. Перемещение и сжатие газов (компрессорные машины)
- Общие сведения . . .
- Сравнение и области применения компрессорных машин различных
- Глава V. Разделение неоднородных систем 176
- Общие сведения 186
- Общие сведения . 227
- Глава VI. Перемешивание в жидких средах 246
- Общие сведения 246
- Глава VII. Основы теплопередачи в химической аппаратуре 260
- Общие сведения 260
- Глава VIII. Нагревание, охлаждение и конденсация 310
- Общие сведения . 310
- Нагревание газообразными высокотемпературными теплоносителями
- Общие сведения . 347
- Общие сведения 382
- Общие сведения 434
- Глава XV. Сушка . . .Ч 583
- Глава XVI. Кристаллизация 632
- Глава XVII. Искусственное охлаждение 646
- Циклы, основанные на сочетании дросселирования и расширения газа
- Глава XVIII. Измельчение твердых материалов 679
- Общие сведения 679
- Крупное дробление 684
- Тонкое измельчение n 693
- Глава XIX. Классификация и сортировка материалов 703
- Глава XX. Смешение твердых материалов 711
- 2. Возникновение и развитие науки о процессах и аппаратах
- Возникновение и развитие науки о процессах и аппаратах
- 3. Классификация основных процессов
- 4. Общие принципы анализа и расчета процессов и аппаратов
- Общие принципы анализа и расчета процессов и аппаратов
- Основные определения
- Некоторые физические свойства жидкостей
- 2. Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Дифференциальные уравнения равновесия Эйлера
- Основное уравнение гидростатики
- Основное уравнение гидростатики
- Основные характеристики движения жидкостей
- Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
- Уравнение неразрывности (сплошности) потока
- 8. Дифференциальные уравнения движения Эйлера
- 9. Дифференциальные уравнения движения Навье—Стокса
- 9., Дифференциальные уравнения движения Навье—Стокса
- 10. Уравнение Бернулли
- 10. Уравнение Бернулли
- Некоторые практические приложения уравнения Бернулли
- 11. Некоторые практические-приложения уравнения Бернулли
- 12« Основы теории подобия и анализа размерностей.
- 12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
- 12. Основы теории подобия и анализа размерностей. Принципы моделирования п
- Гидродинамическое подобие
- 13. Гидродинамическое подобие
- 13. Гидродинамическое подобия
- 13. Гидродинамическое подобие
- Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- Течение неньютоновских жидкостей
- Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
- Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
- Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
- Называемый пластическо
- Зависимость (11,105) изображается на рис. 11-26 линией 2
- 15. Течение неньютоновских жидкостей
- Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
- Расчет диаметра трубопроводов
- 17. Движение тел в жидкостях
- Движение тел в жидкостях
- 17. Движение тел в жидкостях
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 101
- Движение жидкостей через неподвижные зернистые и пористые слои
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 103
- Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 105
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
- 20. Элементы гидродинамики двухфазных потоков
- Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- Структура потоков и распределение времени пребывания жидкости в аппаратах
- Глава III
- Перемещение жидкостей (насосы)
- Общие сведения
- Основные параметры насосов
- 3. Напор насоса. Высота всасывания
- Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- Поршневые насосы
- 5. Поршневые насосы
- 5. Поршневые насосы
- Специальные типы поршневых и центробежных насосов
- Насосы других типов
- 7. Насосы других типов
- 7. Насосы других типов
- Сравнение и области применения насосов различных типов
- 8. Сравнение и области применения насосов различных типов
- Глава IV
- Перемещение и сжатие газов (компрессорные машины)
- Общие сведения
- 2. Термодинамические основы процесса сжатия газов
- 2.. Термодинамические основы процесса сжатия газов
- 2. Термодинамические основы процесса сжатия газов
- 3. Поршневые компрессоры
- Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 4. Ротационные компрессоры и газодувки
- Ротационные компрессоры и газодувки
- 6. Осевые вентиляторы и компрессоры
- Осевые вентиляторы и компрессоры
- Винтовые компрессоры
- Вакуум-насосы
- 8. Вакуум-насосы
- Глава V
- 1. Неоднородные системы и методы их разделения
- Материальный баланс процесса разделения
- Скорость стесненного осаждения (отстаивания)
- 3. Скорость стесненного осаждения (отстаивания)
- 4. Коагуляция частиц дисперсной фазы
- Коагуляция частиц дисперсной фазы
- Отстойники
- 5. Отстойники
- 5. Отстойники
- Общие сведения
- 6. Общие сведения
- 6. Общие сведения
- Уравнения фильтрования
- 8. Фильтровальные перегородки
- Фильтровальные перегородки
- Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтре*
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 10. Расчет фильтров
- 9. Устройство фильтров
- Основные положения
- 12. Центробежная сила и фактор разделения
- Центробежная сила и фактор разделения
- Процессы в отстойных центрифугах
- Процессы в фильтрующих центрифугах
- Устройство центрифуг
- 16. Расчет центрифуг
- 16. Расчет центрифуг
- 17. Общие сведения
- 17. Общие сведения
- 18. Гравитационная очистка газов
- 2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
- Очистка газов под действием инерционных и центробежных сил
- 20. Очистка газов фильтрованием
- Очистка газов фильтрованием
- Мокрая очистка газов
- 21. Мокрая очистка газов
- Электрическая очистка газов
- 22. Электрическая очистка газов
- 22. Электрическая очистка газов
- 23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
- Коагуляция и укрупнение частиц, отделяемых при газоочистке
- 24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
- Глава VI
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 3. Механические перемешивающие устройства
- 3. Механические перемешивающие устройства
- Пневматическое перемешивание
- 5. Перемешивание в трубопроводах
- Перемешивание в трубопроводах
- 6. Перемешивание с помощью сопел и насосов
- 2. Тепловые балансы
- Тепловые балансы
- Основное уравнение теплопередачи
- 4. Температурное поле и температурный градиент
- Температурное поле и температурный градиент
- Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- Тепловое излучение
- 6. Тепловое излучение
- 6. Тепловое излучение
- 7. Передача тепла конвекцией (конвективный теплообмен)
- Передача тепла конвекцией (конвективный теплообмен)
- 7. Передача тепла конвекцией (конвективный теплообмен) 277
- 7. Передача тепла конвекцией (конвективный теплообмен) 279
- 8. Опытные данные по теплоотдаче
- Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 10. Сложная теплоотдача
- Численные значения коэффициентов теплоотдачи
- Сложная теплоотдача
- Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 12., Нестационарный теплообмен
- 12. Нестационарный теплообмен
- Дгср _ ——-f - j_t -
- 12. Нестационарный теплообмен
- Глава VIII нагревание, охлаждение и конденсация
- Общие сведения
- Нагревание водяным паром
- Центробежный насос.
- 4. Нагревание топочными газами
- Нагревание горячей водой
- Нагревание топочными газами
- 1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
- Нагревание высокотемпературными теплоносителями
- I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
- Нагревание электрическим током
- Охлаждение до обыкновенных температур
- Охлаждение до низких температур
- Конденсация паров
- Трубчатые теплообменники
- Змеевиковые теплообменники
- Пластинчатые теплообменники
- Оребренные теплообменники
- 16. Теплообменные устройства реакционных аппаратов
- Конденсаторы смешения
- Расчет теплообменных аппаратов
- Расчет конденсаторов паров
- Глава IX
- Общие сведения
- Однокорпусные выпарные установки
- 2. Однокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Многокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Устройство выпарных аппаратов
- Расчет многокорпусных выпарных аппаратов
- Общие сведения
- 1. Общие сведения
- Равновесие при массопередаче
- Скорость массопередачи
- 3. Скорость массопередачи
- Движущая сила процессов массопередачи
- Массопередача с твердой фазой
- 6. Массопередача с твердой фазой
- Глава XI
- Равновесие при абсорбции
- Материальный и тепловой балансы процесса
- Скорость процесса
- Устройство абсорбционных аппаратов
- — Щели.
- Расчет абсорберов
- 7. Десорбция
- 8. Схемы абсорбционных установок
- Глава XII
- Характеристики двухфазных систем жидкость—пар
- 4. Ректификация
- 4. Ректификация
- Специальные виды перегонки
- Глава XIII
- Общие сведения
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 1/ 2, 8, .... П — ступени.
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 4. Устройство экстракционных аппаратов
- Ступенчатые экстракторы
- 4. Устройство экстракционных аппаратов
- 4. Устройство экстракционных аппаратов
- 1Л. XIII. Экстракция
- 4. Устройство экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 7. Равновесие и скорость процессов экстракции и растворения
- Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
- Способы экстракции и растворения
- 8. Способы экстракции и растворения
- Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
- Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- Расчет экстракционных аппаратов
- Глава XIV
- Общие сведения
- 2. Характеристики адсорбентов и их виды
- Равновесий при адсорбции
- 3. Равновесие при адсорбции
- Скорость адсорбции
- 4. Скорость адсорбции
- 4. Скорость адсорбции
- Десорбция
- 5. Десорбция
- 6. Устройство адсорберов и схемы адсорбционных установок
- 6. Устройство адсорберов и схемы адсорбционных установок
- Расчет адсорберов
- 7. Расчет адсорберов
- Ионообменные процессы
- Глава XV
- Основные параметры влажного газа
- Равновесие при сушке
- Материальный и тепловой балансы сушки
- Определение расходов воздуха и тепла на сушку
- Варианты процесса сушки
- Скорость сушки
- 8. Скорость сушки
- Dwc cftuiP
- Устройство суЬшлок
- Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- Конвективные сушилки с перемешиванием слоя материала
- Конвективные сушилки со взвешенным слоем материала
- 1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
- I камера сушилки; 2 — полые плиты.
- Глава XVI
- 1, Общие сведения
- Равновесие при кристаллизации
- Влияние условий кристаллизации на свойства кристаллов
- Способы кристаллизации
- Устройство кристаллизаторов
- I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
- 7. Расчеты кристаллизаторов Материальный баланс кристаллизации
- Глава XVII искусственное охлаждение
- Общие сведения
- Термодинамические основы получения холода
- Другие методы получения низких температур
- Компрессионные паровые холодильные машины
- Абсорбционные холодильные машины
- Пароводяные эжекторные холодильные машины
- Циклы с дросселированием газа
- Циклы с тепловым насосом
- Сравнение основных циклов глубокого охлаждения
- Методы разделения газов
- Механические процессы
- Глава XVIII измельчение твердых материалов
- Общие сведения
- Физико-механические основы измельчения.
- Щековые дробилки
- Конусные дробилки
- Валковые дробилки
- Ударно-центробежные дробилки
- Барабанные мельницы
- Кольцевые мельницы
- 8 Сепаратор Материал
- Мельницы для сверхтонкого измельчения
- Глава XIX
- Классификация и сортировка материалов
- Грохочение
- Гидравлическая классификация и воздушная сепарация
- Глава XX
- 328 Расчет 343
- Основные процессы и аппараты химической технологии