13. Гидродинамическое подобия
8!
Из полученного уравнения обычно определяют величину Лр, входящую в критерий Ей. В частности, при движении жидкости через трубопроводы и аппараты так находится потеря давления (напора).
Если движение жидкости является установившимся, то критерий гомохронности может быть исключен из уравнений (11,85) и (11,86). Следовательно, для установившегося движения обобщенное уравнение гидродинамики имеет вид
где Гь Г2, Г3, ... —симплексы геометрического подобия.
Приближенное моделирование. Автомодельность. При моделировании многих процессов химической технологии не удается соблюсти полное подобие, т. е. равенство всех определяющих критериев подобия для натуры и модели, как этого требует третья теорема подобия.
Пусть, например, на модели изучается процесс, определяемый лишь двумя критериями — критериями Рейнольдса и Фруда. Для полного подобия процессов критерии Яе' и Рг' для натуры,должны быть соответственно равны критериям Яе" и Рг" для модели, т. е.
где V = ц/р — кинематическая вязкость.
Примем, ЧТО ускорение СИЛЫ тяжести g =-СОП51 и рабочие жидкости в модели и натуре одинаковы, откуда V' = х". Тогда из выражений (А) и (Б) соответственно получаем следующие условия полного подобия:
Одновременное выполнение этих условий возможно лишь при Г = Г, т. е. если модель и натура имеют одинаковые размеры. Такое условие сводит на нет самую идею моделирования, и его реализация практически исключается.
Поэтому в модели, очевидно, целесообразно использовать другую жидкость, отличную по величине кинематической вязкости от рабочей. В данном случае (при g = const) из выражений (А) и (Б) следует:
Приравнивая правые части этих соотношений и проводя простые преобразования, получим
Это означает, что если модель в /г раз меньше натуры, то в ней' надо проводить опыты с жидкостью, имеющей кинематическую вязкость в п3}2 раза меньшую, чем у рабочей жидкости в натуре, что во многих случаях практически трудно осуществить. Так, если рабочей жидкостью в натуре является вода, а размер модели в 4 раза меньше размера натуры, то V жидкости в модели должна быть в 8 раз меньше, чем у воды.
При числе определяющих критериев больше двух выполнение условий полного моделирования еще более затрудняется или вообще невозможно.
(П,85в)
или в более общей форме
Ей = Г (Fr, Re, Г\, Г2, Г3, . .).
(П,85г)
Re7 = Re" и Fr’ = Fr"
или в развернутом виде
w’l' of Г V ~~ v"
(А)
(w’f _ (W"Y g'l’ ~ g’l"
(Б)
I’ w" Г w'
I' _ (иі')а Г ~ (au")a
v'
v"
82 Гл. /1. Основы гидравлики. Общие вопросы прикладной гидравлики Однако при проведении моделирования часто можно удовлетвориться соблюдением не полного подобия, а лишь подобия тех факторов, которые наиболее значительно влияют на исследуемый процесс, т. е. осуществить приближенное моделирование. Так, например, при турбулентном движении капельных жидкостей и газов, перемещаемых с помощью насосов и компрессорных машин, влияние собственного веса жидкости (силы тяжести) на распределение скоростей и перепад давлений очень мало. Поэтому условием равенства значений критерия Фруда, отражающего влияние силы тяжести, при моделировании можно пренебречь и упростить уравнение (П,85в), представив его в виде Еи = /^е,^-) (П,85д) Если какой-либо параметр не влияет на протекание процесса, то процесс называют автомодельным по отношению к этому параметру. Поэтому указанное выше вынужденное турбулентное движение жидкостей можно считать автомодельным по критерию Фруда. Один и тот же критерий (в данном случае критерий Фруда), влияние которого в одних процессах можно не учитывать, в других процессах оказывает определяющее влияние на протекание процесса, например при перемещении жидкости под действием разности плотностей в различных точках ее объема. Автомодельность может наступить при изменении условий протекания процесса. Типичным примером служит сопротивление сил трения движению вязкой жидкости. Как показано в дальнейшем, при значениях критерия Рейнольдса ниже определенного предела оно зависит главным образом от этого критерия и в малой степени—от шероховатости стенок трубы. Однако при увеличении Ие сверх некоторого критического значения фактором, определяющим сопротивление, становится именно шероховатость стенок трубы. Сопротивление перестает зависеть от Ие, т. е. процесс становится автомодельным по этому критерию (см. стр. 88). В случае автомодельности по данному критерию показатель степени при нем в обобщенном уравнении типа уравнения (11,86) получается хиз опыта равным или близким нулю. Модифицированные и производные критерии подобия. Как следует из теории подобия, некоторые физические величины, входящие в критерии подобия, целесообразно заменять на другие, им пропорциональные. Так при описании процессов перемешивания, подставляя в Ие значение окружной скорости мешалки, исключают из выражения скорости постоянные множители, т. е. подставляют в Не произведение диаметра мешалки на число ее оборотов (см. главу VI). Получаемые при этом видоизмененные критерии называют модифицированными. В ряде случаев оказывается затруднительным или даже практически невозможным определить или вычислить ту или иную физическую величину, входящую в критерий подобия. Тогда эту величину исключают путем сочетания двух или большего числа критериев и получения сложных, или производных, критериев подобия, составленных из основных. При этом исключенную величину обычно заменяют на другую, ей пропорциональную, опытное или расчетное определение которой является более простым. Так, например, при естественной конвекции, возникающей под действием разности плотностей жидкости, обусловленной различием температур в разных ее точках, очень трудно определить скорость конвективных токов. Однако эта скорость входит в критерий Фруда, отражающий подобие таких процессов. Поэтому исключают скорость путем сочетания критериев Рейнольдса и Фруда: Ке2 и»2/2р2/ц2 _ Рр2£ Рг гчР,[ц1 |х2
- Scan Pirat
- Глава IV. Перемещение и сжатие газов (компрессорные машины)
- Общие сведения . . .
- Сравнение и области применения компрессорных машин различных
- Глава V. Разделение неоднородных систем 176
- Общие сведения 186
- Общие сведения . 227
- Глава VI. Перемешивание в жидких средах 246
- Общие сведения 246
- Глава VII. Основы теплопередачи в химической аппаратуре 260
- Общие сведения 260
- Глава VIII. Нагревание, охлаждение и конденсация 310
- Общие сведения . 310
- Нагревание газообразными высокотемпературными теплоносителями
- Общие сведения . 347
- Общие сведения 382
- Общие сведения 434
- Глава XV. Сушка . . .Ч 583
- Глава XVI. Кристаллизация 632
- Глава XVII. Искусственное охлаждение 646
- Циклы, основанные на сочетании дросселирования и расширения газа
- Глава XVIII. Измельчение твердых материалов 679
- Общие сведения 679
- Крупное дробление 684
- Тонкое измельчение n 693
- Глава XIX. Классификация и сортировка материалов 703
- Глава XX. Смешение твердых материалов 711
- 2. Возникновение и развитие науки о процессах и аппаратах
- Возникновение и развитие науки о процессах и аппаратах
- 3. Классификация основных процессов
- 4. Общие принципы анализа и расчета процессов и аппаратов
- Общие принципы анализа и расчета процессов и аппаратов
- Основные определения
- Некоторые физические свойства жидкостей
- 2. Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Дифференциальные уравнения равновесия Эйлера
- Основное уравнение гидростатики
- Основное уравнение гидростатики
- Основные характеристики движения жидкостей
- Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
- Уравнение неразрывности (сплошности) потока
- 8. Дифференциальные уравнения движения Эйлера
- 9. Дифференциальные уравнения движения Навье—Стокса
- 9., Дифференциальные уравнения движения Навье—Стокса
- 10. Уравнение Бернулли
- 10. Уравнение Бернулли
- Некоторые практические приложения уравнения Бернулли
- 11. Некоторые практические-приложения уравнения Бернулли
- 12« Основы теории подобия и анализа размерностей.
- 12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
- 12. Основы теории подобия и анализа размерностей. Принципы моделирования п
- Гидродинамическое подобие
- 13. Гидродинамическое подобие
- 13. Гидродинамическое подобия
- 13. Гидродинамическое подобие
- Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- Течение неньютоновских жидкостей
- Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
- Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
- Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
- Называемый пластическо
- Зависимость (11,105) изображается на рис. 11-26 линией 2
- 15. Течение неньютоновских жидкостей
- Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
- Расчет диаметра трубопроводов
- 17. Движение тел в жидкостях
- Движение тел в жидкостях
- 17. Движение тел в жидкостях
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 101
- Движение жидкостей через неподвижные зернистые и пористые слои
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 103
- Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 105
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
- 20. Элементы гидродинамики двухфазных потоков
- Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- Структура потоков и распределение времени пребывания жидкости в аппаратах
- Глава III
- Перемещение жидкостей (насосы)
- Общие сведения
- Основные параметры насосов
- 3. Напор насоса. Высота всасывания
- Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- Поршневые насосы
- 5. Поршневые насосы
- 5. Поршневые насосы
- Специальные типы поршневых и центробежных насосов
- Насосы других типов
- 7. Насосы других типов
- 7. Насосы других типов
- Сравнение и области применения насосов различных типов
- 8. Сравнение и области применения насосов различных типов
- Глава IV
- Перемещение и сжатие газов (компрессорные машины)
- Общие сведения
- 2. Термодинамические основы процесса сжатия газов
- 2.. Термодинамические основы процесса сжатия газов
- 2. Термодинамические основы процесса сжатия газов
- 3. Поршневые компрессоры
- Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 4. Ротационные компрессоры и газодувки
- Ротационные компрессоры и газодувки
- 6. Осевые вентиляторы и компрессоры
- Осевые вентиляторы и компрессоры
- Винтовые компрессоры
- Вакуум-насосы
- 8. Вакуум-насосы
- Глава V
- 1. Неоднородные системы и методы их разделения
- Материальный баланс процесса разделения
- Скорость стесненного осаждения (отстаивания)
- 3. Скорость стесненного осаждения (отстаивания)
- 4. Коагуляция частиц дисперсной фазы
- Коагуляция частиц дисперсной фазы
- Отстойники
- 5. Отстойники
- 5. Отстойники
- Общие сведения
- 6. Общие сведения
- 6. Общие сведения
- Уравнения фильтрования
- 8. Фильтровальные перегородки
- Фильтровальные перегородки
- Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтре*
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 10. Расчет фильтров
- 9. Устройство фильтров
- Основные положения
- 12. Центробежная сила и фактор разделения
- Центробежная сила и фактор разделения
- Процессы в отстойных центрифугах
- Процессы в фильтрующих центрифугах
- Устройство центрифуг
- 16. Расчет центрифуг
- 16. Расчет центрифуг
- 17. Общие сведения
- 17. Общие сведения
- 18. Гравитационная очистка газов
- 2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
- Очистка газов под действием инерционных и центробежных сил
- 20. Очистка газов фильтрованием
- Очистка газов фильтрованием
- Мокрая очистка газов
- 21. Мокрая очистка газов
- Электрическая очистка газов
- 22. Электрическая очистка газов
- 22. Электрическая очистка газов
- 23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
- Коагуляция и укрупнение частиц, отделяемых при газоочистке
- 24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
- Глава VI
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 3. Механические перемешивающие устройства
- 3. Механические перемешивающие устройства
- Пневматическое перемешивание
- 5. Перемешивание в трубопроводах
- Перемешивание в трубопроводах
- 6. Перемешивание с помощью сопел и насосов
- 2. Тепловые балансы
- Тепловые балансы
- Основное уравнение теплопередачи
- 4. Температурное поле и температурный градиент
- Температурное поле и температурный градиент
- Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- Тепловое излучение
- 6. Тепловое излучение
- 6. Тепловое излучение
- 7. Передача тепла конвекцией (конвективный теплообмен)
- Передача тепла конвекцией (конвективный теплообмен)
- 7. Передача тепла конвекцией (конвективный теплообмен) 277
- 7. Передача тепла конвекцией (конвективный теплообмен) 279
- 8. Опытные данные по теплоотдаче
- Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 10. Сложная теплоотдача
- Численные значения коэффициентов теплоотдачи
- Сложная теплоотдача
- Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 12., Нестационарный теплообмен
- 12. Нестационарный теплообмен
- Дгср _ ——-f - j_t -
- 12. Нестационарный теплообмен
- Глава VIII нагревание, охлаждение и конденсация
- Общие сведения
- Нагревание водяным паром
- Центробежный насос.
- 4. Нагревание топочными газами
- Нагревание горячей водой
- Нагревание топочными газами
- 1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
- Нагревание высокотемпературными теплоносителями
- I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
- Нагревание электрическим током
- Охлаждение до обыкновенных температур
- Охлаждение до низких температур
- Конденсация паров
- Трубчатые теплообменники
- Змеевиковые теплообменники
- Пластинчатые теплообменники
- Оребренные теплообменники
- 16. Теплообменные устройства реакционных аппаратов
- Конденсаторы смешения
- Расчет теплообменных аппаратов
- Расчет конденсаторов паров
- Глава IX
- Общие сведения
- Однокорпусные выпарные установки
- 2. Однокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Многокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Устройство выпарных аппаратов
- Расчет многокорпусных выпарных аппаратов
- Общие сведения
- 1. Общие сведения
- Равновесие при массопередаче
- Скорость массопередачи
- 3. Скорость массопередачи
- Движущая сила процессов массопередачи
- Массопередача с твердой фазой
- 6. Массопередача с твердой фазой
- Глава XI
- Равновесие при абсорбции
- Материальный и тепловой балансы процесса
- Скорость процесса
- Устройство абсорбционных аппаратов
- — Щели.
- Расчет абсорберов
- 7. Десорбция
- 8. Схемы абсорбционных установок
- Глава XII
- Характеристики двухфазных систем жидкость—пар
- 4. Ректификация
- 4. Ректификация
- Специальные виды перегонки
- Глава XIII
- Общие сведения
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 1/ 2, 8, .... П — ступени.
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 4. Устройство экстракционных аппаратов
- Ступенчатые экстракторы
- 4. Устройство экстракционных аппаратов
- 4. Устройство экстракционных аппаратов
- 1Л. XIII. Экстракция
- 4. Устройство экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 7. Равновесие и скорость процессов экстракции и растворения
- Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
- Способы экстракции и растворения
- 8. Способы экстракции и растворения
- Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
- Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- Расчет экстракционных аппаратов
- Глава XIV
- Общие сведения
- 2. Характеристики адсорбентов и их виды
- Равновесий при адсорбции
- 3. Равновесие при адсорбции
- Скорость адсорбции
- 4. Скорость адсорбции
- 4. Скорость адсорбции
- Десорбция
- 5. Десорбция
- 6. Устройство адсорберов и схемы адсорбционных установок
- 6. Устройство адсорберов и схемы адсорбционных установок
- Расчет адсорберов
- 7. Расчет адсорберов
- Ионообменные процессы
- Глава XV
- Основные параметры влажного газа
- Равновесие при сушке
- Материальный и тепловой балансы сушки
- Определение расходов воздуха и тепла на сушку
- Варианты процесса сушки
- Скорость сушки
- 8. Скорость сушки
- Dwc cftuiP
- Устройство суЬшлок
- Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- Конвективные сушилки с перемешиванием слоя материала
- Конвективные сушилки со взвешенным слоем материала
- 1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
- I камера сушилки; 2 — полые плиты.
- Глава XVI
- 1, Общие сведения
- Равновесие при кристаллизации
- Влияние условий кристаллизации на свойства кристаллов
- Способы кристаллизации
- Устройство кристаллизаторов
- I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
- 7. Расчеты кристаллизаторов Материальный баланс кристаллизации
- Глава XVII искусственное охлаждение
- Общие сведения
- Термодинамические основы получения холода
- Другие методы получения низких температур
- Компрессионные паровые холодильные машины
- Абсорбционные холодильные машины
- Пароводяные эжекторные холодильные машины
- Циклы с дросселированием газа
- Циклы с тепловым насосом
- Сравнение основных циклов глубокого охлаждения
- Методы разделения газов
- Механические процессы
- Глава XVIII измельчение твердых материалов
- Общие сведения
- Физико-механические основы измельчения.
- Щековые дробилки
- Конусные дробилки
- Валковые дробилки
- Ударно-центробежные дробилки
- Барабанные мельницы
- Кольцевые мельницы
- 8 Сепаратор Материал
- Мельницы для сверхтонкого измельчения
- Глава XIX
- Классификация и сортировка материалов
- Грохочение
- Гидравлическая классификация и воздушная сепарация
- Глава XX
- 328 Расчет 343
- Основные процессы и аппараты химической технологии