КАСАТКИН
16. Расчет центрифуг
225
Проинтегрировав это выражение от 0 до рц и от гс до гр, находим
'« 2 2 ГР
j ^ = Тйг (V'80)
ИЛИ
П ~ " 7800
*.-Р (V.81)
Толщина осадка может быть найдена из соотношения
г р — ^ с
hoc = -ь ■ (V ,82)
где величина b имеет для определенной центрифуги соответствующее значение.
После подстановки в уравнение фильтрования (V.75) значений рц и Лос из равенств (V.81) и (V,82) определим
Qt “ bk6CpScp (V.83)
где k = 1/цго — величина, характеризующая удельное сопротивление осадка, а 0Ср = — ржл2гс-/-Ср/900 — величина, пропорциональная центробежной силе, причем
р
' ср
Г1—Г1 '■р + Гс
(гр — гс) 2
Аналогично отстойным центрифугам действительная производительность фильтрующих центрифуг может быть найдена из соотношения (У,74).
Расчет фильтрующих центрифуг периодического действия. Для таких центрифуг существует оптимальная продолжительность стадии центрифугирования, соответствующая наибольшей производительности центрифуги. Практический способ определения наибольшей производительности центрифуги, применимый для несжимаемых и сжимаемых осадков, состоит в следующем.
Выразим условную среднюю производительность центрифуги по фугату за один цикл ее работы <ЗуСЛ (м31сек) соотношением
Vi
(V.84)
где Vx — объем фугата, полученного за один цикл центрифугирования, ж3; тц — продолжительность стадии центрифугирования, сек; твсп = тот -j- тв; тот — продолжительность стадии отжима осадка, сек; тв — продолжительность стадии выгрузки осадка, се/с.
В данном случае, как и для фильтров периодического действия (см. стр. j93), лри постоянном значении твсп уменьшение тц приводит не только к снижению толщины осадка, что сопровождается повышением производительности центрифуги, но и к более частому повторению стадий отжима и выгрузки осадка, что уменьшает производительность центрифуги.
Для нахождения оптимальной продолжительности стадии центрифугирования т0ПТ, соответствующей наибольшей производительности центрифуги, продифференцируем уравнение (V,84) по продолжительности стадии центрифугирования и первую производную приравняем нулю. Отсюда после небольших преобразований получим
—j~^~
= (V.85) <*Гц ТЪпт "Г ТВСП
Из сопоставления уравнений (V.84) и (V.85) следует, что
<>уел = ^ (V.86)
Иными словами, оптимальный цикл центрифугирования достигается при таких значениях Иопт и топт, когда мгновенный расход фугата dVjdi^ становится равным условной средней производительности центрифуги Qycji', в этот момент стадия центрифугирования должна заканчиваться.
Равенство (V.85) можно написать в виде
Топт = dvjdk« ~ Твсп (V,87)
Для любого значения Vlt включая У0пт> отношение VJ(d.VJdia) представляет собой некоторую фиктивную величину, соответствующую продолжительности стадии центрифу-
8. А. Г. Касаткин
226
Гл. V. Разделение неоднородных систем
гирования, необходимой для получения фугата в объеме У, при мгновенной скорости цен- трифугирования в момент времени Тц. Обозначив эту величину через Тф, можно написать
Тц — Тф твсп (V .88)
На практике величина Тф может быть найдена делением всего объема фугата, получен- ного за время Тц, на мгновенную скорость центрифугирования в момент времени тц. Мгно- венную скорость можно определить с достаточной для практики степенью точности, перейдя от производной к отношению конечных приращений и измерив ряд небольших объемов фугата и соответствующих продолжительностей их получения. Если теперь в координатах Тц—(тф — твсп) нанести экспериментальную кривую, то т0Пт будет отвечать точке, абсцисса и ордината которой равны.
Расход энергии на центрифугирование. При расчете учитывается расход энергии на вращение ротора (сообщение кинетической энергии жидкости, преодоление трения ротора
о воздух и в подшипниках), выгрузку осадка н компенсацию потерь в передаче и электродвигателе. Мощность электродви- гателя должна быть на 10—20% выше расчетной, что объясняется необходимостью преодолевать в начальный мо- мент инерционные силы всех вращающихся частей.
Гидроциклоны. Разделение жидких неоднород- ных систем под действием центробежных сил можно осуществлять не только в центрифугах, но и в аппаратах, не имеющих вращающихся ча- стей — гидроциклонах. Корпус гидро- циклона (рис. У-37)состоит из верхней короткой цилиндрической части 1 и удлиненного кониче- ского днища 2. Суспензия подается тангенциально через штуцер 3 в цилиндрическую часть / корпуса и приобретает интенсивное вращательное движе- ние. Под действием центробежных сил наиболее крупные твердые частицы перемещаются к стенкам аппарата и концентрируются во внешних слоях вращающегося потока. Затем они движутся по спиральной траектории вдоль стенок гидроциклона вниз к штуцеру 4, через который отводятся в виде сгущенной суспензии (шлама). Большая часть жидкости с содержащимися в ней мелкими твер- дыми частицами (осветленная жидкость) движется во внутреннем спиральном потоке вверх вдоль оси аппарата. Осветленная жидкость, или слив, уда- ляется через патрубок 5, укрепленный на перего- родке 6, и штуцер 7. В действительности картина движения потоков в гидроциклоне сложнее опи- санной, так как в аппарате возникают также ра- диальные и замкнутые циркуляционные токи.
Вследствие значительных окружных скоростей потока вдоль оси гидро- циклона образуется воздушный столб, давление в котором ниже атмо- сферного. Воздушное ядро ограничивает с внутренней стороны поток вос- ходящих мелких частиц и оказывает значительное влияние на разделяю- щее действие гидроциклонов.
Гидроциклоны широко применяются для осветления или обогащения суспензий (сгущение шламов), а также для классификации (разделение материалов на фракции по размерам зерен) твердых частиц диаметром от 5 до 150 мкм.
Чем меньше диаметр гидроциклона, тем больше развиваемые в нем центробежные силы и, следовательно, тем меньше размер отделяемых частиц. Применяемые в качестве классификаторов гидроцик'лоны имеют диаметр 300—350 мм и высоту 1—1,2. м. Для сгущения суспензий успешно используются гидроциклоны диаметром 100 мм и менее. Для сгущения и осветления тонких суспензий применяют гидроциклоны диаметром 10—15 мм. Обычно гидроциклоны малого диаметра объединяют в общий агрегат, в котором они работают параллельно — мультигидроциклоны.
Рис. У-37. Гидроциклон:
1 — цилиндрическая часть корпуса; 2 — коническое днище; 8 — штуцер для подачи суспензии; 4 — штуцер для вывода шлама; 5 — патрубок; 6 — перегородка; 7 — штуцер для вывода слнва.
Yandex.RTB R-A-252273-3
Содержание
-
Scan Pirat
-
Глава IV. Перемещение и сжатие газов (компрессорные машины)
-
Общие сведения . . .
-
Сравнение и области применения компрессорных машин различных
-
Глава V. Разделение неоднородных систем 176
-
Общие сведения 186
-
Общие сведения . 227
-
Глава VI. Перемешивание в жидких средах 246
-
Общие сведения 246
-
Глава VII. Основы теплопередачи в химической аппаратуре 260
-
Общие сведения 260
-
Глава VIII. Нагревание, охлаждение и конденсация 310
-
Общие сведения . 310
-
Нагревание газообразными высокотемпературными теплоносителями
-
Общие сведения . 347
-
Общие сведения 382
-
Общие сведения 434
-
Глава XV. Сушка . . .Ч 583
-
Глава XVI. Кристаллизация 632
-
Глава XVII. Искусственное охлаждение 646
-
Циклы, основанные на сочетании дросселирования и расширения газа
-
Глава XVIII. Измельчение твердых материалов 679
-
Общие сведения 679
-
Крупное дробление 684
-
Тонкое измельчение n 693
-
Глава XIX. Классификация и сортировка материалов 703
-
Глава XX. Смешение твердых материалов 711
-
2. Возникновение и развитие науки о процессах и аппаратах
-
Возникновение и развитие науки о процессах и аппаратах
-
3. Классификация основных процессов
-
4. Общие принципы анализа и расчета процессов и аппаратов
-
Общие принципы анализа и расчета процессов и аппаратов
-
Основные определения
-
Некоторые физические свойства жидкостей
-
2. Некоторые физические свойства жидкостей
-
Некоторые физические свойства жидкостей
-
Некоторые физические свойства жидкостей
-
Дифференциальные уравнения равновесия Эйлера
-
Основное уравнение гидростатики
-
Основное уравнение гидростатики
-
Основные характеристики движения жидкостей
-
Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
-
Уравнение неразрывности (сплошности) потока
-
8. Дифференциальные уравнения движения Эйлера
-
9. Дифференциальные уравнения движения Навье—Стокса
-
9., Дифференциальные уравнения движения Навье—Стокса
-
10. Уравнение Бернулли
-
10. Уравнение Бернулли
-
Некоторые практические приложения уравнения Бернулли
-
11. Некоторые практические-приложения уравнения Бернулли
-
12« Основы теории подобия и анализа размерностей.
-
12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
-
12. Основы теории подобия и анализа размерностей. Принципы моделирования п
-
Гидродинамическое подобие
-
13. Гидродинамическое подобие
-
13. Гидродинамическое подобия
-
13. Гидродинамическое подобие
-
Гидравлические сопротивления в трубопроводах
-
14. Гидравлические сопротивления в трубопроводах
-
14. Гидравлические сопротивления в трубопроводах
-
Течение неньютоновских жидкостей
-
Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
-
Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
-
Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
-
Называемый пластическо
-
Зависимость (11,105) изображается на рис. 11-26 линией 2
-
15. Течение неньютоновских жидкостей
-
Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
-
Расчет диаметра трубопроводов
-
17. Движение тел в жидкостях
-
Движение тел в жидкостях
-
17. Движение тел в жидкостях
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 101
-
Движение жидкостей через неподвижные зернистые и пористые слои
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 103
-
Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 105
-
19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
-
19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
-
20. Элементы гидродинамики двухфазных потоков
-
Элементы гидродинамики двухфазных потоков
-
20. Элементы гидродинамики двухфазных потоков
-
20. Элементы гидродинамики двухфазных потоков
-
Структура потоков и распределение времени пребывания жидкости в аппаратах
-
Глава III
-
Перемещение жидкостей (насосы)
-
Общие сведения
-
Основные параметры насосов
-
3. Напор насоса. Высота всасывания
-
Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
Поршневые насосы
-
5. Поршневые насосы
-
5. Поршневые насосы
-
Специальные типы поршневых и центробежных насосов
-
Насосы других типов
-
7. Насосы других типов
-
7. Насосы других типов
-
Сравнение и области применения насосов различных типов
-
8. Сравнение и области применения насосов различных типов
-
Глава IV
-
Перемещение и сжатие газов (компрессорные машины)
-
Общие сведения
-
2. Термодинамические основы процесса сжатия газов
-
2.. Термодинамические основы процесса сжатия газов
-
2. Термодинамические основы процесса сжатия газов
-
3. Поршневые компрессоры
-
Поршневые компрессоры
-
3. Поршневые компрессоры
-
3. Поршневые компрессоры
-
3. Поршневые компрессоры
-
4. Ротационные компрессоры и газодувки
-
Ротационные компрессоры и газодувки
-
6. Осевые вентиляторы и компрессоры
-
Осевые вентиляторы и компрессоры
-
Винтовые компрессоры
-
Вакуум-насосы
-
8. Вакуум-насосы
-
Глава V
-
1. Неоднородные системы и методы их разделения
-
Материальный баланс процесса разделения
-
Скорость стесненного осаждения (отстаивания)
-
3. Скорость стесненного осаждения (отстаивания)
-
4. Коагуляция частиц дисперсной фазы
-
Коагуляция частиц дисперсной фазы
-
Отстойники
-
5. Отстойники
-
5. Отстойники
-
Общие сведения
-
6. Общие сведения
-
6. Общие сведения
-
Уравнения фильтрования
-
8. Фильтровальные перегородки
-
Фильтровальные перегородки
-
Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтре*
-
9. Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтров
-
10. Расчет фильтров
-
9. Устройство фильтров
-
Основные положения
-
12. Центробежная сила и фактор разделения
-
Центробежная сила и фактор разделения
-
Процессы в отстойных центрифугах
-
Процессы в фильтрующих центрифугах
-
Устройство центрифуг
-
16. Расчет центрифуг
-
16. Расчет центрифуг
-
17. Общие сведения
-
17. Общие сведения
-
18. Гравитационная очистка газов
-
2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
-
Очистка газов под действием инерционных и центробежных сил
-
20. Очистка газов фильтрованием
-
Очистка газов фильтрованием
-
Мокрая очистка газов
-
21. Мокрая очистка газов
-
Электрическая очистка газов
-
22. Электрическая очистка газов
-
22. Электрическая очистка газов
-
23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
-
Коагуляция и укрупнение частиц, отделяемых при газоочистке
-
24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
-
Глава VI
-
2. Механическое перемешивание
-
2. Механическое перемешивание
-
2. Механическое перемешивание
-
3. Механические перемешивающие устройства
-
3. Механические перемешивающие устройства
-
Пневматическое перемешивание
-
5. Перемешивание в трубопроводах
-
Перемешивание в трубопроводах
-
6. Перемешивание с помощью сопел и насосов
-
2. Тепловые балансы
-
Тепловые балансы
-
Основное уравнение теплопередачи
-
4. Температурное поле и температурный градиент
-
Температурное поле и температурный градиент
-
Передача тепла теплопроводностью
-
5. Передача тепла теплопроводностью
-
5. Передача тепла теплопроводностью
-
Тепловое излучение
-
6. Тепловое излучение
-
6. Тепловое излучение
-
7. Передача тепла конвекцией (конвективный теплообмен)
-
Передача тепла конвекцией (конвективный теплообмен)
-
7. Передача тепла конвекцией (конвективный теплообмен) 277
-
7. Передача тепла конвекцией (конвективный теплообмен) 279
-
8. Опытные данные по теплоотдаче
-
Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
10. Сложная теплоотдача
-
Численные значения коэффициентов теплоотдачи
-
Сложная теплоотдача
-
Теплопередача
-
11. Теплопередача
-
11. Теплопередача
-
11. Теплопередача
-
12., Нестационарный теплообмен
-
12. Нестационарный теплообмен
-
Дгср _ ——-f - j_t -
-
12. Нестационарный теплообмен
-
Глава VIII нагревание, охлаждение и конденсация
-
Общие сведения
-
Нагревание водяным паром
-
Центробежный насос.
-
4. Нагревание топочными газами
-
Нагревание горячей водой
-
Нагревание топочными газами
-
1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
-
Нагревание высокотемпературными теплоносителями
-
I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
-
Нагревание электрическим током
-
Охлаждение до обыкновенных температур
-
Охлаждение до низких температур
-
Конденсация паров
-
Трубчатые теплообменники
-
Змеевиковые теплообменники
-
Пластинчатые теплообменники
-
Оребренные теплообменники
-
16. Теплообменные устройства реакционных аппаратов
-
Конденсаторы смешения
-
Расчет теплообменных аппаратов
-
Расчет конденсаторов паров
-
Глава IX
-
Общие сведения
-
Однокорпусные выпарные установки
-
2. Однокорпусные выпарные установки
-
3. Многокорпусные выпарные установки
-
Многокорпусные выпарные установки
-
3. Многокорпусные выпарные установки
-
Устройство выпарных аппаратов
-
Расчет многокорпусных выпарных аппаратов
-
Общие сведения
-
1. Общие сведения
-
Равновесие при массопередаче
-
Скорость массопередачи
-
3. Скорость массопередачи
-
Движущая сила процессов массопередачи
-
Массопередача с твердой фазой
-
6. Массопередача с твердой фазой
-
Глава XI
-
Равновесие при абсорбции
-
Материальный и тепловой балансы процесса
-
Скорость процесса
-
Устройство абсорбционных аппаратов
-
— Щели.
-
Расчет абсорберов
-
7. Десорбция
-
8. Схемы абсорбционных установок
-
Глава XII
-
Характеристики двухфазных систем жидкость—пар
-
4. Ректификация
-
4. Ректификация
-
Специальные виды перегонки
-
Глава XIII
-
Общие сведения
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
3. Методы экстракции
-
3. Методы экстракции
-
3. Методы экстракции
-
1/ 2, 8, .... П — ступени.
-
3. Методы экстракции
-
3. Методы экстракции
-
3. Методы экстракции
-
4. Устройство экстракционных аппаратов
-
Ступенчатые экстракторы
-
4. Устройство экстракционных аппаратов
-
4. Устройство экстракционных аппаратов
-
1Л. XIII. Экстракция
-
4. Устройство экстракционных аппаратов
-
5. Расчет экстракционных аппаратов
-
5. Расчет экстракционных аппаратов
-
7. Равновесие и скорость процессов экстракции и растворения
-
Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
-
Способы экстракции и растворения
-
8. Способы экстракции и растворения
-
Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
-
Устройство экстракционных аппаратов
-
9. Устройство экстракционных аппаратов
-
9. Устройство экстракционных аппаратов
-
Расчет экстракционных аппаратов
-
Глава XIV
-
Общие сведения
-
2. Характеристики адсорбентов и их виды
-
Равновесий при адсорбции
-
3. Равновесие при адсорбции
-
Скорость адсорбции
-
4. Скорость адсорбции
-
4. Скорость адсорбции
-
Десорбция
-
5. Десорбция
-
6. Устройство адсорберов и схемы адсорбционных установок
-
6. Устройство адсорберов и схемы адсорбционных установок
-
Расчет адсорберов
-
7. Расчет адсорберов
-
Ионообменные процессы
-
Глава XV
-
Основные параметры влажного газа
-
Равновесие при сушке
-
Материальный и тепловой балансы сушки
-
Определение расходов воздуха и тепла на сушку
-
Варианты процесса сушки
-
Скорость сушки
-
8. Скорость сушки
-
Dwc cftuiP
-
Устройство суЬшлок
-
Конвективные сушилки с неподвижным или движущимся плотным слоем материала
-
Конвективные сушилки с перемешиванием слоя материала
-
Конвективные сушилки со взвешенным слоем материала
-
1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
-
I камера сушилки; 2 — полые плиты.
-
Глава XVI
-
1, Общие сведения
-
Равновесие при кристаллизации
-
Влияние условий кристаллизации на свойства кристаллов
-
Способы кристаллизации
-
Устройство кристаллизаторов
-
I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
-
7. Расчеты кристаллизаторов Материальный баланс кристаллизации
-
Глава XVII искусственное охлаждение
-
Общие сведения
-
Термодинамические основы получения холода
-
Другие методы получения низких температур
-
Компрессионные паровые холодильные машины
-
Абсорбционные холодильные машины
-
Пароводяные эжекторные холодильные машины
-
Циклы с дросселированием газа
-
Циклы с тепловым насосом
-
Сравнение основных циклов глубокого охлаждения
-
Методы разделения газов
-
Механические процессы
-
Глава XVIII измельчение твердых материалов
-
Общие сведения
-
Физико-механические основы измельчения.
-
Щековые дробилки
-
Конусные дробилки
-
Валковые дробилки
-
Ударно-центробежные дробилки
-
Барабанные мельницы
-
Кольцевые мельницы
-
8 Сепаратор Материал
-
Мельницы для сверхтонкого измельчения
-
Глава XIX
-
Классификация и сортировка материалов
-
Грохочение
-
Гидравлическая классификация и воздушная сепарация
-
Глава XX
-
328 Расчет 343
-
Основные процессы и аппараты химической технологии
Yandex.RTB R-A-252273-4