Расчет теплообменных аппаратов
При проектировании теплообменников их тепловой расчет сводится к определению необходимой поверхности теплообмена Р при известных расходах, начальной и конечной температурах теплоносителей.
Для действующих теплообменных аппаратов выполняют поверочные тецловые расчеты, в которых возможная производительность аппарата сопоставляется с фактической и определяются условия, соответствующие оптимальному режиму работы теплообменника. Ниже рассмотрена общая методика технологических расчетов при проектировании теплообменников.
Тепловые расчеты производят совместно с гидравлическими и конструктивными и на основе всех этих расчетов подбирают наиболее подходящие стандартные или нормализованные конструкции теплообменных аппаратов. Выбранная конструкция должна быть по возможности опти-, мальной — сочетающей интенсивный теплообмен с низкой стоимостью, надежностью, дешевизной и удобством эксплуатации.
До проведения собственно расчета трубчатых теплообменников следует установить целесообразность направления одного из теплоносителей в трубное, а другого — в межтрубное пространство аппарата. Выбор пространства для движения теплоносителя в поверхностном теплообменнике любого типа производят, исходя из необходимости улучшить условия теплоотдачи со стороны теплоносителя с большим термическим сопротивлением. Поэтому жидкость (или газ), расход которой меньше или которая обладает большей вязкостью, рекомендуется направлять в то пространство, где ее скорость будет выше, например в трубное, а не в межтрубное пространство одноходового кожухотрубчатого теплообменника. В трубное пространство целесообразно направлять также теплоносители, содержащие твердые взвеси и загрязнения, с тем чтобы облегчить очистку поверхности теплообмена; теплоносители, находящиеся под избыточным давлением (по соображениям механической прочности аппарата), и, наконец, химически активные вещества, так как в этом случае для изготовления корпуса теплообменника не требуется дорогого коррозионностойкого материала. Следует учитывать также, что при направлении нагревающего теплоносителя в трубы уменьшаются потери тепла в окружающую среду.
Принимая направление взаимного движения теплоносителей, учитывают и преимущество противотока при теплообмене без изменения агрегатного состояния, а также целесообразность совпадения направлений вынужденного и свободного движения теплоносителя (например, при движении нагреваемой среды снизу вверх)*
20. Расчет теплообменных аппаратов 341 Скорости теплоносителей в выбранном аппарате должны обеспечивать благоприятное сочетание интенсивного переноса тепла и умеренного расхода энергии на перемещение теплоносителя. При этом желательно, чтобы теплообмен происходил в условиях турбулентного режима течения теплоносителей при развитом турбулентном движении (Ие Ю4) или близком к нему. Тепловой расчет проектируемого теплообменника производят в следующей последовательности. Определение тепловой нагрузки и расхода теплоносителей. Тепловую нагрузку находят по уравнениям теплового баланса: по уравнению (VII, 1) или, в случае изменения агрегатного состояния одного или обоих теплоносителей, по уравнению (VI 1,2). Из уравнений (VII,I) и (VI 1,2) определяют также расходы теплоносителей. Если же их расходы заданы, то, пользуясь теми же уравнениями, находят обычно неизвестную в этом случае конечную температуру одного из теплоносителей. Когда неизвестны конечные температуры обоих теплоносителей, то ими задаются, принимая во внимание, что разность температур между теплоносителями на конце теплообменника должна быть практически не менее 3—5 °С. Наиболее желателен выбор оптимального значения конечной температуры на основе технико-экономического расчета. Определение средней разности температур и средних температур теплоносителей. В общем случае средняя разность температур равна разности средних температур теплоносителей А/Ср — ^ср! — ^срг (VI 11,8) причем средняя температура каждого из теплоносителей может быть определена по формуле Р /ср = -г\1ар о где / — текущая температура теплоносителя. Таким образом, для пользования равенством (VIII,8) необходимо знать закономерности изменения температур теплоносителей вдоль поверхности теплообмена что ограничивает возможности применения этого уравнения для расчетов. При противотоке и прямотоке среднюю разность температур определяют как среднелогарифмическую из большей и меньшей разностей температур теплоносителей на концах теплообменника [по уравнению (VIII,91)] или как среднеарифметическую. При более сложных схемах движения теплоносителей — перекрестном и смешанном токе — средняя разность температур находится по тем же уравнениям с введением поправочного множителя, вычисляемого так, как указывалось ранее (см. стр. 303). В расчетной практике рекомендуется* при противотоке среднюю температуру теплоносителя с меньшим перепадом температур по длине аппарата определять как среднеарифметическую, а среднюю температуру другого теплоносителя находить по известной величине А^ср, пользуясь соотношением (VII 1,8). Определение коэффициента теплопередачи и поверхности теплообмена. Для определения коэффициента теплопередачи К необходимо предварительно рассчитать коэффициенты теплоотдачи аг и а2 по обе стороны стенки, разделяющей обменивающиеся теплом среды, а также термическое сопротивление самой стенки, на которой в процессе эксплуатации теплообменника обычно образуется (с одной или двух сторон) слой загрязнений. Коэффициенты теплоотдачи рассчитывают в зависимости от условий теплоотдачи по одному из уравнений, приведенных в главе VII. * Рамм В. М. Теплообменные аппараты. М., Госхимиздат, 1948. 212 с.
342 Гл. VIП. Нагревание, охлаждение и конденсация Для вычисления а часто бывает необходимо знать температуру стенки ?ст (СС) или удельную тепловую нагрузку ц [в/и/(.иа •«*)], значения которых, в свою очередь, зависят от определяемого значения а. В таких случаях коэффициенты теплоотдачи обычно рассчитывают методом последовательных приближений: значениями tcт и ц задаются и после' определения значения коэффициента теплопередачи К проверяют (см. ниже). Термические сопротивления стенки и загрязнений находят в зависимости от толщины собственно стенки и толщины слоя загрязнений (по практическим данным), а также от значений коэффициентов теплопроводности материала стенки и загрязнений. Когда перенос тепла происходит через плоскую стенку, коэффициент теплопередачи определяется по уравнению (VI 1,83): К-- А А* + ■ где Для тонкой цилиндрической стенки К также рассчитывают по уравнению (VI 1,83). Получив значение К, проверяют предварительно принятые значения ?ст и д и, в случае недостаточно удовлетворительного совпадения принятого и расчетного значений, производят пересчет, задаваясь новым значением или д. Пересчетов можно избежать, если для определения /ст или 9 воспользоваться графическим методом. Ои заключается в построении (перед расчетом Так, например, если коэффициенты теплоотдачи по температуру стенки с другой ее стороны ^ст2 = ^ — = а2 (7СТ2 — /2), где ^2 — средняя температура другого теплоносителя. Строя график зависимости ^ и от принятых значений /ст , или нагрузочную характеристику (рис. УШ-31), по точке пересечения кривых = /! (*сЧ) и = /а (4т2) определяют удельную тепловую нагрузку Определив к и ср Конструктивный расчет производят после теплового расчета теплообменника. Для кожухотрубчатых аппаратов он сводится к определению числа или длины труб, размещению их в трубной решетке (с учетом числа ходов) и нахождению основных размеров (диаметра и высоты) аппарата. При конструктивном расчете определяют также диаметры патрубков штуцеров теплообменника. Число труб п и длина / каждой трубы связаны между собой зависимостью —л? <™,я где е?р — расчетный диаметр трубы. Из выражения (VIII,9) находят необходимую длину труб, которую округляют обычно до ближайшей большей величины по стандарту или нормали. . сумма термических сопротивлений собственно стенки и загрязнений.К) так называемой нагрузочной характеристики проектируемого теплообменного аппарата.обе стороны стеики зависят от соответствующей температуры стенки, то, задаваясь рядом значений /СТ1, вычисляют а* и находят соответствующие значения ^ = ах (1г — /СТ1), где — средняя температура одного теплоносителя. По значению термического сопротивления стенки бстДст рассчитываютЯ\ > определяют а2 и г?2 =д. Тогда коэффициент теплопередачи К = с^/Д/ср-К, находят поверхность теплообмена по общему уравнению теплопередачи:
21. Расчет конденсаторов паров 343 Внутренний диаметр кожухотрубчатого теплообменника рассчитывают по формуле £^вн = 5 где в — шаг между трубами (я = 1,2 — 1,5сгн); Диаметры патрубков штуцеров таплообменника определяют из урав- нения расхода, принимая значения скоростей, приведенные в главе II. Конструктивный расчет змеевиковых теплообменников включает оп- ределение общей длины, числа витков и высоты змеевика. Принимая диаметр витка змеевика с1ж и расстояние между витками по вертикали к, находят длину одного витка змеевика как винтовой линии по формуле / = У><*зм)2 Величиной к можно пренебречь, так как обычно расстояние между витками к при- нимают равным 1,5—2 диаметрам трубы змеевика. При числе витков п общая длина змее- вика Ь = пяйзш откуда Расчетное число витков округляют до целого числа. Общая высота змеевика (по осям крайних труб) Я = пк. Для прямых змеевиков с поверхностью теплообмена И общая длина змеевика ‘—яг(Ь—1) -Ь 4с?н (VIII,10)Ь — {2а — 1) — число труб, разме- щаемых на диагонали наибольшего шестиугольника при шахматном расположении труб (а — число труб на стороне наибольшего шестиугольника); (1И — наружный диаметр трубы.+ № (VIII.11)п==ТТ~ (VIII,12)л а3м
Рис. VII1-31. Построение нагрузочной характеристики теплообменника.
где £?р — расчетный диаметр трубы змеевика.
Змеевик обычно состоит из нескольких параллельных секций. Зная расход жидкости Усек и принимая ее скорость I® в трубе змеевика, определяют число секций
я
Т
С?2Ш
(VIII,14)
Соответственно длина одной секции змеевика I — Ыпг.
Гидравлический расчет теплообменников. Гидравлическое сопротивление теплообменников находят по общей формуле (11,1026) с учетом потери напора на трение и местные сопротивления (расширения и сужения потока и его повороты между ходами).
-
Содержание
- Scan Pirat
- Глава IV. Перемещение и сжатие газов (компрессорные машины)
- Общие сведения . . .
- Сравнение и области применения компрессорных машин различных
- Глава V. Разделение неоднородных систем 176
- Общие сведения 186
- Общие сведения . 227
- Глава VI. Перемешивание в жидких средах 246
- Общие сведения 246
- Глава VII. Основы теплопередачи в химической аппаратуре 260
- Общие сведения 260
- Глава VIII. Нагревание, охлаждение и конденсация 310
- Общие сведения . 310
- Нагревание газообразными высокотемпературными теплоносителями
- Общие сведения . 347
- Общие сведения 382
- Общие сведения 434
- Глава XV. Сушка . . .Ч 583
- Глава XVI. Кристаллизация 632
- Глава XVII. Искусственное охлаждение 646
- Циклы, основанные на сочетании дросселирования и расширения газа
- Глава XVIII. Измельчение твердых материалов 679
- Общие сведения 679
- Крупное дробление 684
- Тонкое измельчение n 693
- Глава XIX. Классификация и сортировка материалов 703
- Глава XX. Смешение твердых материалов 711
- 2. Возникновение и развитие науки о процессах и аппаратах
- Возникновение и развитие науки о процессах и аппаратах
- 3. Классификация основных процессов
- 4. Общие принципы анализа и расчета процессов и аппаратов
- Общие принципы анализа и расчета процессов и аппаратов
- Основные определения
- Некоторые физические свойства жидкостей
- 2. Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Некоторые физические свойства жидкостей
- Дифференциальные уравнения равновесия Эйлера
- Основное уравнение гидростатики
- Основное уравнение гидростатики
- Основные характеристики движения жидкостей
- Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 6. Основные характеристики движения жидкостей
- 48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
- Уравнение неразрывности (сплошности) потока
- 8. Дифференциальные уравнения движения Эйлера
- 9. Дифференциальные уравнения движения Навье—Стокса
- 9., Дифференциальные уравнения движения Навье—Стокса
- 10. Уравнение Бернулли
- 10. Уравнение Бернулли
- Некоторые практические приложения уравнения Бернулли
- 11. Некоторые практические-приложения уравнения Бернулли
- 12« Основы теории подобия и анализа размерностей.
- 12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
- 12. Основы теории подобия и анализа размерностей. Принципы моделирования п
- Гидродинамическое подобие
- 13. Гидродинамическое подобие
- 13. Гидродинамическое подобия
- 13. Гидродинамическое подобие
- Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- 14. Гидравлические сопротивления в трубопроводах
- Течение неньютоновских жидкостей
- Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
- Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
- Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
- Называемый пластическо
- Зависимость (11,105) изображается на рис. 11-26 линией 2
- 15. Течение неньютоновских жидкостей
- Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
- Расчет диаметра трубопроводов
- 17. Движение тел в жидкостях
- Движение тел в жидкостях
- 17. Движение тел в жидкостях
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 101
- Движение жидкостей через неподвижные зернистые и пористые слои
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 103
- Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
- 18. Движение жидкостей через неподвижные зернистые и пористые слои 105
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
- 19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
- 20. Элементы гидродинамики двухфазных потоков
- Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- 20. Элементы гидродинамики двухфазных потоков
- Структура потоков и распределение времени пребывания жидкости в аппаратах
- Глава III
- Перемещение жидкостей (насосы)
- Общие сведения
- Основные параметры насосов
- 3. Напор насоса. Высота всасывания
- Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- 4. Центробежные насосы
- Поршневые насосы
- 5. Поршневые насосы
- 5. Поршневые насосы
- Специальные типы поршневых и центробежных насосов
- Насосы других типов
- 7. Насосы других типов
- 7. Насосы других типов
- Сравнение и области применения насосов различных типов
- 8. Сравнение и области применения насосов различных типов
- Глава IV
- Перемещение и сжатие газов (компрессорные машины)
- Общие сведения
- 2. Термодинамические основы процесса сжатия газов
- 2.. Термодинамические основы процесса сжатия газов
- 2. Термодинамические основы процесса сжатия газов
- 3. Поршневые компрессоры
- Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 3. Поршневые компрессоры
- 4. Ротационные компрессоры и газодувки
- Ротационные компрессоры и газодувки
- 6. Осевые вентиляторы и компрессоры
- Осевые вентиляторы и компрессоры
- Винтовые компрессоры
- Вакуум-насосы
- 8. Вакуум-насосы
- Глава V
- 1. Неоднородные системы и методы их разделения
- Материальный баланс процесса разделения
- Скорость стесненного осаждения (отстаивания)
- 3. Скорость стесненного осаждения (отстаивания)
- 4. Коагуляция частиц дисперсной фазы
- Коагуляция частиц дисперсной фазы
- Отстойники
- 5. Отстойники
- 5. Отстойники
- Общие сведения
- 6. Общие сведения
- 6. Общие сведения
- Уравнения фильтрования
- 8. Фильтровальные перегородки
- Фильтровальные перегородки
- Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтре*
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 9. Устройство фильтров
- 10. Расчет фильтров
- 9. Устройство фильтров
- Основные положения
- 12. Центробежная сила и фактор разделения
- Центробежная сила и фактор разделения
- Процессы в отстойных центрифугах
- Процессы в фильтрующих центрифугах
- Устройство центрифуг
- 16. Расчет центрифуг
- 16. Расчет центрифуг
- 17. Общие сведения
- 17. Общие сведения
- 18. Гравитационная очистка газов
- 2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
- Очистка газов под действием инерционных и центробежных сил
- 20. Очистка газов фильтрованием
- Очистка газов фильтрованием
- Мокрая очистка газов
- 21. Мокрая очистка газов
- Электрическая очистка газов
- 22. Электрическая очистка газов
- 22. Электрическая очистка газов
- 23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
- Коагуляция и укрупнение частиц, отделяемых при газоочистке
- 24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
- Глава VI
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 2. Механическое перемешивание
- 3. Механические перемешивающие устройства
- 3. Механические перемешивающие устройства
- Пневматическое перемешивание
- 5. Перемешивание в трубопроводах
- Перемешивание в трубопроводах
- 6. Перемешивание с помощью сопел и насосов
- 2. Тепловые балансы
- Тепловые балансы
- Основное уравнение теплопередачи
- 4. Температурное поле и температурный градиент
- Температурное поле и температурный градиент
- Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- 5. Передача тепла теплопроводностью
- Тепловое излучение
- 6. Тепловое излучение
- 6. Тепловое излучение
- 7. Передача тепла конвекцией (конвективный теплообмен)
- Передача тепла конвекцией (конвективный теплообмен)
- 7. Передача тепла конвекцией (конвективный теплообмен) 277
- 7. Передача тепла конвекцией (конвективный теплообмен) 279
- 8. Опытные данные по теплоотдаче
- Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 8. Опытные данные по теплоотдаче
- 10. Сложная теплоотдача
- Численные значения коэффициентов теплоотдачи
- Сложная теплоотдача
- Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 11. Теплопередача
- 12., Нестационарный теплообмен
- 12. Нестационарный теплообмен
- Дгср _ ——-f - j_t -
- 12. Нестационарный теплообмен
- Глава VIII нагревание, охлаждение и конденсация
- Общие сведения
- Нагревание водяным паром
- Центробежный насос.
- 4. Нагревание топочными газами
- Нагревание горячей водой
- Нагревание топочными газами
- 1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
- Нагревание высокотемпературными теплоносителями
- I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
- Нагревание электрическим током
- Охлаждение до обыкновенных температур
- Охлаждение до низких температур
- Конденсация паров
- Трубчатые теплообменники
- Змеевиковые теплообменники
- Пластинчатые теплообменники
- Оребренные теплообменники
- 16. Теплообменные устройства реакционных аппаратов
- Конденсаторы смешения
- Расчет теплообменных аппаратов
- Расчет конденсаторов паров
- Глава IX
- Общие сведения
- Однокорпусные выпарные установки
- 2. Однокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Многокорпусные выпарные установки
- 3. Многокорпусные выпарные установки
- Устройство выпарных аппаратов
- Расчет многокорпусных выпарных аппаратов
- Общие сведения
- 1. Общие сведения
- Равновесие при массопередаче
- Скорость массопередачи
- 3. Скорость массопередачи
- Движущая сила процессов массопередачи
- Массопередача с твердой фазой
- 6. Массопередача с твердой фазой
- Глава XI
- Равновесие при абсорбции
- Материальный и тепловой балансы процесса
- Скорость процесса
- Устройство абсорбционных аппаратов
- — Щели.
- Расчет абсорберов
- 7. Десорбция
- 8. Схемы абсорбционных установок
- Глава XII
- Характеристики двухфазных систем жидкость—пар
- 4. Ректификация
- 4. Ректификация
- Специальные виды перегонки
- Глава XIII
- Общие сведения
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 2. Равновесие в системах жидкость—жидкость
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 1/ 2, 8, .... П — ступени.
- 3. Методы экстракции
- 3. Методы экстракции
- 3. Методы экстракции
- 4. Устройство экстракционных аппаратов
- Ступенчатые экстракторы
- 4. Устройство экстракционных аппаратов
- 4. Устройство экстракционных аппаратов
- 1Л. XIII. Экстракция
- 4. Устройство экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 5. Расчет экстракционных аппаратов
- 7. Равновесие и скорость процессов экстракции и растворения
- Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
- Способы экстракции и растворения
- 8. Способы экстракции и растворения
- Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
- Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- 9. Устройство экстракционных аппаратов
- Расчет экстракционных аппаратов
- Глава XIV
- Общие сведения
- 2. Характеристики адсорбентов и их виды
- Равновесий при адсорбции
- 3. Равновесие при адсорбции
- Скорость адсорбции
- 4. Скорость адсорбции
- 4. Скорость адсорбции
- Десорбция
- 5. Десорбция
- 6. Устройство адсорберов и схемы адсорбционных установок
- 6. Устройство адсорберов и схемы адсорбционных установок
- Расчет адсорберов
- 7. Расчет адсорберов
- Ионообменные процессы
- Глава XV
- Основные параметры влажного газа
- Равновесие при сушке
- Материальный и тепловой балансы сушки
- Определение расходов воздуха и тепла на сушку
- Варианты процесса сушки
- Скорость сушки
- 8. Скорость сушки
- Dwc cftuiP
- Устройство суЬшлок
- Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- Конвективные сушилки с перемешиванием слоя материала
- Конвективные сушилки со взвешенным слоем материала
- 1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
- I камера сушилки; 2 — полые плиты.
- Глава XVI
- 1, Общие сведения
- Равновесие при кристаллизации
- Влияние условий кристаллизации на свойства кристаллов
- Способы кристаллизации
- Устройство кристаллизаторов
- I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
- 7. Расчеты кристаллизаторов Материальный баланс кристаллизации
- Глава XVII искусственное охлаждение
- Общие сведения
- Термодинамические основы получения холода
- Другие методы получения низких температур
- Компрессионные паровые холодильные машины
- Абсорбционные холодильные машины
- Пароводяные эжекторные холодильные машины
- Циклы с дросселированием газа
- Циклы с тепловым насосом
- Сравнение основных циклов глубокого охлаждения
- Методы разделения газов
- Механические процессы
- Глава XVIII измельчение твердых материалов
- Общие сведения
- Физико-механические основы измельчения.
- Щековые дробилки
- Конусные дробилки
- Валковые дробилки
- Ударно-центробежные дробилки
- Барабанные мельницы
- Кольцевые мельницы
- 8 Сепаратор Материал
- Мельницы для сверхтонкого измельчения
- Глава XIX
- Классификация и сортировка материалов
- Грохочение
- Гидравлическая классификация и воздушная сепарация
- Глава XX
- 328 Расчет 343
- Основные процессы и аппараты химической технологии