КАСАТКИН
Равновесие при массопередаче
Правило фаз. Знание равновесия в процессах массопередачи позволяет установить пределы, до которых могут протекать эти процессы. В основе равновесия лежит известное правило фаз:
Ф+С=к+2
где Ф — число фаз; С — число степеней свободы, т. е. число независимых переменных, значения которых можно произвольно изменять без нарушения числа нди вида (состава) фаз в системе; К — число компонентов системы.
13 д. Г. Касаткин
386
Г л. X. Основы массопередачи
Правило фаз указывает число параметров, которое можно менять произвольно (в известных пределах) при расчете равновесия в процессах мас- сообмена. Применим это правило к указанным выше двум группам процессов массопередачи: 1) каждая из двух взаимодействующих фаз содержит, помимо распределяемого компонента, инертный компонент-носитель (абсорбция, экстракция и др.); 2) в каждой из двух фаз компонент-носитель отсутствует (ректификация).
В первом случае система, состоящая из двух фаз (Ф — 2) и трех компонентов — распределяемого вещества и двух веществ — носителей, согласно правилу фаз, имеет три степени свободы:
С=/С + 2 —Ф==3 + 2 —2 = 3
Таким образом, число степеней свободы равно общему числу компонентов, включая компоненты-носители. В этомхлучае можно произвольно изменять общее давление (Р), температуру (/) и концентрацию одной из фаз по распределяемому компоненту (хА или уА). Следовательно, при данных температуре и давлении (t = const и Р = const) некоторой концентрации одной из фаз соответствует строго определенная концентрация другой фазы.
Во втором случае система, состоящая из двух фаз (Ф = 2) и двух распределяемых компонентов (К = 2), имеет только две степени свободы:
С=К+2—Ф=2+2—2=2
Принимая во внимание, что процессы массопередачи осуществляются обычно при постоянном давлении (Р = const), можно заключить, что в данном случае с изменением концентрации фазы (хА) должна меняться температура. Вместе с тем, если бы такой процесс проводился при t — const, то различным концентрациям фазы отвечали бы разные давления.
Зависимости между независимыми переменными могут быть изображены в плоских координатах в виде так называемых фазовых диаграмм. В расчетах по массопередаче используют диаграммы зависимости давления от концентрации (при t = const), температуры от концентрации (при Р = const) и диаграммы зависимости между равновесными концентрациями фаз, приведенные ниже.
Фазовое равновесие. Линия равновесия. Рассмотрим в качестве примера процесс массопередачи, в котором аммиак, представляющий собой распределяемый компонент, поглощается из его смеси с воздухом чистой водой, т. е. ввиду отсутствия равновесия переходит из газовой фазы Фу, где его концентрация равна у, в жидкую фазу Фх, имеющую начальную концентрацию х = 0. С началом растворения аммиака в воде начнется переход части его молекул в обратном направлении со скоростью, пропорциональной концентрации аммиака в воде и на границе раздела фаз. С течением времени скорость перехода аммиака в воду будет снижаться, а скорость обратного перехода возрастать, причем такой двусторонний переход будет продолжаться до тех пор, пока скорости переноса в обоих направлениях не станут равны друг другу. При равенстве скоростей установится динамическое равновесие, при котором не будет происходить видимого перехода вещества из фазы в фазу.
При равновесии достигается определенная зависимость между предельными, или равновесными, концентрациями распределяемого вещества в фазах для данных температуры и давления, при которых осуществляется процесс массопередачи.
В условиях равновесия некоторому значению х отвечает строго определенная равновесная концентрация в другой фазе, которую обозначим через у*. Соответственно концентрации у отвечает равновесная концентрация х*. В самом общем виде связь между концентрациями распределяемого вещества в фазах при равновесии выражается зависимостью:
£* = /(*) (Х.8)
2. Равновесие при массопередаче
387
ИЛИ
(Х.9)
Любая из этих зависимостей изображается графически линией равновесия, которая либо является кривой, как показано на рис. Х-1, либо в частном случае— прямой линией. На рис. Х-1, а показана равновесная кривая для системы с компонентами-носителями, выражающая зависимость равновесной концентрации, например в газовой фазе, от концентрации жидкой фазы при Р = const и t = const. На рис. Х-1, б приведен пример равновесной кривой для процесса ректификации, построенной при Р = const. Каждая точка кривой, как показано на рисунке, соответствует разным температурам t2 и т. д.).
Q;g-
Sw Ун
L»; SH
l;S
Рис. Х-1. Диаграммы равновесия: a i— при Р = const at— const; б — при р —const.
Рис. Х-2. К выводу уравнения материального баланса противо- точного массообменного аппарата
Отношение концентраций фаз при равновесии называется коэффициентом распределения:.
У
х
<х.10)
Для разбавленных растворов линия равновесия близка к прямой, и т является практически величиной постоянной, равной тангенсу угла наклона линии равновесия'.
Конкретный вид законов равновесного распределения, выражающих зависимости (Х,8) и (Х,9), различен для разных процессов массопередачи. Так, например, в процессе абсорбции при низких концентрациях распределяемого вещества в исходном растворе равновесие описывается законом Генри (глава XI), для идеальных растворов в процессах ректификации — законом Рауля (глава XII) и т. д.
Как будет показано ниже, зная линию равновесия для конкретного процесса и рабочие, т. е. неравновесные, концентрации фаз в соответствующих точках, можно определить направление и движущую силу массопередачи в любой точке аппарата. На основе этих данных может быть рассчитана средняя движущая сила, а по ней — с к орость процесса массопередачи.
Материальный баланс. Рабочая линия. Рабочие концентрации распределяемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений.
Зависимость между ^рабочими концентрациями распределяемого вещества в фазах у = / (х) изображается линией, которая носит название рабочей линии процесса. Вид функции у — / (х), или уравнение рабочей линии в его общем виде, является одинаковым для всех массообменных процессов и получается из их материальных балансов.
Рассмотрим схему массообменного аппарата, работающего в режиме идеального вытеснения при противотоке фаз (рис. Х-2). Пусть в процессе
388
Гл. X. Основы массопередачи
массопередачи из фазы в фазу, например из газовой фазы в жидкую, переходит только один распределяемый компонент (скажем, аммиак).
Сверху в аппарат поступает Ьн кг/сек одной фазы (жидкой), содержащей хн вес. долей распределяемого компонента, а снизу из аппарата удаляется Ьк кг!сек той же фазы, содержащей хк вес. долей распределяемого компонента. Снизу в аппарат поступает кг/сек другой фазы (газовой) концентрацией уИ и сверху удаляется 0К кг!сек этой фазы, имеющей концентрацию ук вес. долей распределяемого компонента.
Тогда материальный баланс по всему веществу
Теперь напишем уравнения материального баланса для части аппарата от его нижнего конца до некоторого произвольного сечения, для которого расходы фаз составляют С и Ь кг!сек, а их текущие концентрации равны у и х соответственно.
Материальный баланс по всему веществу
Уравнение (X, 11) представляет собой уравнение рабочей линии, выражающее связь между рабочими концентрациями распределяемого компонента в фазах для произвольного сечения аппарата.
Расходы фаз постоянны по высоте аппарата, например в процессах ректификации, когда числа молей компонентов, которыми обмениваются фазы, равны. В других случаях, если концентрации фаз мало изменяются по высоте аппарата, то расходы фаз по его высоте можно с достаточной для практических целей точностью считать постоянными, т. е. принять L = = const и G = const. При этом LK = L, GH = G и уравнение (X, 11) приводится к виду
Выражения (X, 11 а) и (X,116) являются уравнениями рабочей линии, которыми обычно пользуются при расчетах массообменных процессов.
Таким образом, рабочая линия представляет собой прямую, которая наклонена к горизонту под углом, тангенс которого равен А, и отсекает на оси ординат отрезок, равный В. Рабочая линия для всего аппарата ограничена точками с координатами хн и г/к (верхний конец аппарата, рис. Х-2) и уи и хк (нижний конец аппарата).
и материальный баланс по распределяемому компоненту
@вУн -{- Laxa — + Ц<_ХК
Ga -J- L — G -j- L]
К
н материальный баланс по распределяемому компоненту
СнУн Ьх =■ ву ЬкХц
Решая это уравнение относительно у, получим
(X, 11 а)
Вводя обозначения ~ — А и ун хк = В, находим
1 у = Ах + В
(Х.Иб)
2. Равновесие при массопередаче
389
Если расходы фаз значительно изменяются по высоте аппарата, то материальные балансы по компоненту-носителю для части аппарата от его нижнего конца до произвольного сечения (где концентрации фаз равны х и у) выражаются уравне- ниями: _
1*(\ х) — (1 — хк) и в (1 —• у) — 0Н (1 — ун)
откуда
1 \ ГУ л / А — Ун 1
£•=’
I —X 1 11 — У
Подставив значения Ь и (? в общее уравнение материального баланса (Х,П), получим
1 ~ х
У-
-Ун
1—У) \1~У ,
После соответствующих преобразований уравнение рабочей линии принимает вид:
У —
(Х,11в)
Из уравнения (Х,11в) следует, что в рассматриваемом случае рабочая линия криволинейна.
Направление массопередачи. Распределяемое вещество всегда переходит из фазы, где его содержание выше равновесного, в фазу, в которой концентрация этого вещества ниже равновесной. Направление переноса распределяемого вещества, т. е. направление массопередачи, можно определить с помощью линии равновесия и рабочей линии (рис. Х-3).
Рис. Х-3. Определение направления массопередачи по у—х диаграмме:
а ». рабочая линия ниже линии равновесия; б — рабочая лнння выше линин равновесия
Пусть массопередача происходит между фазами Фх и Фу, рабочие концентрации которых равны ха у соответственно.
Если рабочая линия расположена ниже линии равновесия (рис. Х-3, а), то для любой точки, например точки А рабочей линии, у <3 <1 у* и х ь> х*, где у* их* — равновесные концентрации. Следовательно, распределяемое вещество (компонент) будет переходить в этом случае и$ фазы Фх в фазу Фу. Перенос в таком направлении происходит, например, в процессе ректификации, где более летучий компонент переходит из жидкой фазы (Ф.*) в паровую (Ф^).
Если же рабочая линия расположена выше линии равновесия (рис. Х-3, б), то для произвольно выбранной на рабочей линии точки А концентрация у > у* и х <1 х*. При этом распределяемый компонент будет переходить из фазы Фу в фазу Фх.
390
Гл. X. Основы массопередачи
В качестве примера такого направления массопередачи можно указать на. направление переноса в процессе абсорбции, где распределяемый компонент (поглощаемый газ) переходит из газовой фазы (Фу) в жидкую
т-
Таким образом, на у—л:-диаграмме направление процесса массопередачи может быть определено по взаимному положению равновесной и рабочей линий.
-
Содержание
-
Scan Pirat
-
Глава IV. Перемещение и сжатие газов (компрессорные машины)
-
Общие сведения . . .
-
Сравнение и области применения компрессорных машин различных
-
Глава V. Разделение неоднородных систем 176
-
Общие сведения 186
-
Общие сведения . 227
-
Глава VI. Перемешивание в жидких средах 246
-
Общие сведения 246
-
Глава VII. Основы теплопередачи в химической аппаратуре 260
-
Общие сведения 260
-
Глава VIII. Нагревание, охлаждение и конденсация 310
-
Общие сведения . 310
-
Нагревание газообразными высокотемпературными теплоносителями
-
Общие сведения . 347
-
Общие сведения 382
-
Общие сведения 434
-
Глава XV. Сушка . . .Ч 583
-
Глава XVI. Кристаллизация 632
-
Глава XVII. Искусственное охлаждение 646
-
Циклы, основанные на сочетании дросселирования и расширения газа
-
Глава XVIII. Измельчение твердых материалов 679
-
Общие сведения 679
-
Крупное дробление 684
-
Тонкое измельчение n 693
-
Глава XIX. Классификация и сортировка материалов 703
-
Глава XX. Смешение твердых материалов 711
-
2. Возникновение и развитие науки о процессах и аппаратах
-
Возникновение и развитие науки о процессах и аппаратах
-
3. Классификация основных процессов
-
4. Общие принципы анализа и расчета процессов и аппаратов
-
Общие принципы анализа и расчета процессов и аппаратов
-
Основные определения
-
Некоторые физические свойства жидкостей
-
2. Некоторые физические свойства жидкостей
-
Некоторые физические свойства жидкостей
-
Некоторые физические свойства жидкостей
-
Дифференциальные уравнения равновесия Эйлера
-
Основное уравнение гидростатики
-
Основное уравнение гидростатики
-
Основные характеристики движения жидкостей
-
Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
6. Основные характеристики движения жидкостей
-
48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
-
Уравнение неразрывности (сплошности) потока
-
8. Дифференциальные уравнения движения Эйлера
-
9. Дифференциальные уравнения движения Навье—Стокса
-
9., Дифференциальные уравнения движения Навье—Стокса
-
10. Уравнение Бернулли
-
10. Уравнение Бернулли
-
Некоторые практические приложения уравнения Бернулли
-
11. Некоторые практические-приложения уравнения Бернулли
-
12« Основы теории подобия и анализа размерностей.
-
12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
-
12. Основы теории подобия и анализа размерностей. Принципы моделирования п
-
Гидродинамическое подобие
-
13. Гидродинамическое подобие
-
13. Гидродинамическое подобия
-
13. Гидродинамическое подобие
-
Гидравлические сопротивления в трубопроводах
-
14. Гидравлические сопротивления в трубопроводах
-
14. Гидравлические сопротивления в трубопроводах
-
Течение неньютоновских жидкостей
-
Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
-
Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
-
Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
-
Называемый пластическо
-
Зависимость (11,105) изображается на рис. 11-26 линией 2
-
15. Течение неньютоновских жидкостей
-
Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
-
Расчет диаметра трубопроводов
-
17. Движение тел в жидкостях
-
Движение тел в жидкостях
-
17. Движение тел в жидкостях
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 101
-
Движение жидкостей через неподвижные зернистые и пористые слои
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 103
-
Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
-
18. Движение жидкостей через неподвижные зернистые и пористые слои 105
-
19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
-
19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
-
20. Элементы гидродинамики двухфазных потоков
-
Элементы гидродинамики двухфазных потоков
-
20. Элементы гидродинамики двухфазных потоков
-
20. Элементы гидродинамики двухфазных потоков
-
Структура потоков и распределение времени пребывания жидкости в аппаратах
-
Глава III
-
Перемещение жидкостей (насосы)
-
Общие сведения
-
Основные параметры насосов
-
3. Напор насоса. Высота всасывания
-
Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
4. Центробежные насосы
-
Поршневые насосы
-
5. Поршневые насосы
-
5. Поршневые насосы
-
Специальные типы поршневых и центробежных насосов
-
Насосы других типов
-
7. Насосы других типов
-
7. Насосы других типов
-
Сравнение и области применения насосов различных типов
-
8. Сравнение и области применения насосов различных типов
-
Глава IV
-
Перемещение и сжатие газов (компрессорные машины)
-
Общие сведения
-
2. Термодинамические основы процесса сжатия газов
-
2.. Термодинамические основы процесса сжатия газов
-
2. Термодинамические основы процесса сжатия газов
-
3. Поршневые компрессоры
-
Поршневые компрессоры
-
3. Поршневые компрессоры
-
3. Поршневые компрессоры
-
3. Поршневые компрессоры
-
4. Ротационные компрессоры и газодувки
-
Ротационные компрессоры и газодувки
-
6. Осевые вентиляторы и компрессоры
-
Осевые вентиляторы и компрессоры
-
Винтовые компрессоры
-
Вакуум-насосы
-
8. Вакуум-насосы
-
Глава V
-
1. Неоднородные системы и методы их разделения
-
Материальный баланс процесса разделения
-
Скорость стесненного осаждения (отстаивания)
-
3. Скорость стесненного осаждения (отстаивания)
-
4. Коагуляция частиц дисперсной фазы
-
Коагуляция частиц дисперсной фазы
-
Отстойники
-
5. Отстойники
-
5. Отстойники
-
Общие сведения
-
6. Общие сведения
-
6. Общие сведения
-
Уравнения фильтрования
-
8. Фильтровальные перегородки
-
Фильтровальные перегородки
-
Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтре*
-
9. Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтров
-
9. Устройство фильтров
-
10. Расчет фильтров
-
9. Устройство фильтров
-
Основные положения
-
12. Центробежная сила и фактор разделения
-
Центробежная сила и фактор разделения
-
Процессы в отстойных центрифугах
-
Процессы в фильтрующих центрифугах
-
Устройство центрифуг
-
16. Расчет центрифуг
-
16. Расчет центрифуг
-
17. Общие сведения
-
17. Общие сведения
-
18. Гравитационная очистка газов
-
2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
-
Очистка газов под действием инерционных и центробежных сил
-
20. Очистка газов фильтрованием
-
Очистка газов фильтрованием
-
Мокрая очистка газов
-
21. Мокрая очистка газов
-
Электрическая очистка газов
-
22. Электрическая очистка газов
-
22. Электрическая очистка газов
-
23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
-
Коагуляция и укрупнение частиц, отделяемых при газоочистке
-
24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
-
Глава VI
-
2. Механическое перемешивание
-
2. Механическое перемешивание
-
2. Механическое перемешивание
-
3. Механические перемешивающие устройства
-
3. Механические перемешивающие устройства
-
Пневматическое перемешивание
-
5. Перемешивание в трубопроводах
-
Перемешивание в трубопроводах
-
6. Перемешивание с помощью сопел и насосов
-
2. Тепловые балансы
-
Тепловые балансы
-
Основное уравнение теплопередачи
-
4. Температурное поле и температурный градиент
-
Температурное поле и температурный градиент
-
Передача тепла теплопроводностью
-
5. Передача тепла теплопроводностью
-
5. Передача тепла теплопроводностью
-
Тепловое излучение
-
6. Тепловое излучение
-
6. Тепловое излучение
-
7. Передача тепла конвекцией (конвективный теплообмен)
-
Передача тепла конвекцией (конвективный теплообмен)
-
7. Передача тепла конвекцией (конвективный теплообмен) 277
-
7. Передача тепла конвекцией (конвективный теплообмен) 279
-
8. Опытные данные по теплоотдаче
-
Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
8. Опытные данные по теплоотдаче
-
10. Сложная теплоотдача
-
Численные значения коэффициентов теплоотдачи
-
Сложная теплоотдача
-
Теплопередача
-
11. Теплопередача
-
11. Теплопередача
-
11. Теплопередача
-
12., Нестационарный теплообмен
-
12. Нестационарный теплообмен
-
Дгср _ ——-f - j_t -
-
12. Нестационарный теплообмен
-
Глава VIII нагревание, охлаждение и конденсация
-
Общие сведения
-
Нагревание водяным паром
-
Центробежный насос.
-
4. Нагревание топочными газами
-
Нагревание горячей водой
-
Нагревание топочными газами
-
1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
-
Нагревание высокотемпературными теплоносителями
-
I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
-
Нагревание электрическим током
-
Охлаждение до обыкновенных температур
-
Охлаждение до низких температур
-
Конденсация паров
-
Трубчатые теплообменники
-
Змеевиковые теплообменники
-
Пластинчатые теплообменники
-
Оребренные теплообменники
-
16. Теплообменные устройства реакционных аппаратов
-
Конденсаторы смешения
-
Расчет теплообменных аппаратов
-
Расчет конденсаторов паров
-
Глава IX
-
Общие сведения
-
Однокорпусные выпарные установки
-
2. Однокорпусные выпарные установки
-
3. Многокорпусные выпарные установки
-
Многокорпусные выпарные установки
-
3. Многокорпусные выпарные установки
-
Устройство выпарных аппаратов
-
Расчет многокорпусных выпарных аппаратов
-
Общие сведения
-
1. Общие сведения
-
Равновесие при массопередаче
-
Скорость массопередачи
-
3. Скорость массопередачи
-
Движущая сила процессов массопередачи
-
Массопередача с твердой фазой
-
6. Массопередача с твердой фазой
-
Глава XI
-
Равновесие при абсорбции
-
Материальный и тепловой балансы процесса
-
Скорость процесса
-
Устройство абсорбционных аппаратов
-
— Щели.
-
Расчет абсорберов
-
7. Десорбция
-
8. Схемы абсорбционных установок
-
Глава XII
-
Характеристики двухфазных систем жидкость—пар
-
4. Ректификация
-
4. Ректификация
-
Специальные виды перегонки
-
Глава XIII
-
Общие сведения
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
2. Равновесие в системах жидкость—жидкость
-
3. Методы экстракции
-
3. Методы экстракции
-
3. Методы экстракции
-
1/ 2, 8, .... П — ступени.
-
3. Методы экстракции
-
3. Методы экстракции
-
3. Методы экстракции
-
4. Устройство экстракционных аппаратов
-
Ступенчатые экстракторы
-
4. Устройство экстракционных аппаратов
-
4. Устройство экстракционных аппаратов
-
1Л. XIII. Экстракция
-
4. Устройство экстракционных аппаратов
-
5. Расчет экстракционных аппаратов
-
5. Расчет экстракционных аппаратов
-
7. Равновесие и скорость процессов экстракции и растворения
-
Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
-
Способы экстракции и растворения
-
8. Способы экстракции и растворения
-
Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
-
Устройство экстракционных аппаратов
-
9. Устройство экстракционных аппаратов
-
9. Устройство экстракционных аппаратов
-
Расчет экстракционных аппаратов
-
Глава XIV
-
Общие сведения
-
2. Характеристики адсорбентов и их виды
-
Равновесий при адсорбции
-
3. Равновесие при адсорбции
-
Скорость адсорбции
-
4. Скорость адсорбции
-
4. Скорость адсорбции
-
Десорбция
-
5. Десорбция
-
6. Устройство адсорберов и схемы адсорбционных установок
-
6. Устройство адсорберов и схемы адсорбционных установок
-
Расчет адсорберов
-
7. Расчет адсорберов
-
Ионообменные процессы
-
Глава XV
-
Основные параметры влажного газа
-
Равновесие при сушке
-
Материальный и тепловой балансы сушки
-
Определение расходов воздуха и тепла на сушку
-
Варианты процесса сушки
-
Скорость сушки
-
8. Скорость сушки
-
Dwc cftuiP
-
Устройство суЬшлок
-
Конвективные сушилки с неподвижным или движущимся плотным слоем материала
-
Конвективные сушилки с перемешиванием слоя материала
-
Конвективные сушилки со взвешенным слоем материала
-
1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
-
I камера сушилки; 2 — полые плиты.
-
Глава XVI
-
1, Общие сведения
-
Равновесие при кристаллизации
-
Влияние условий кристаллизации на свойства кристаллов
-
Способы кристаллизации
-
Устройство кристаллизаторов
-
I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
-
7. Расчеты кристаллизаторов Материальный баланс кристаллизации
-
Глава XVII искусственное охлаждение
-
Общие сведения
-
Термодинамические основы получения холода
-
Другие методы получения низких температур
-
Компрессионные паровые холодильные машины
-
Абсорбционные холодильные машины
-
Пароводяные эжекторные холодильные машины
-
Циклы с дросселированием газа
-
Циклы с тепловым насосом
-
Сравнение основных циклов глубокого охлаждения
-
Методы разделения газов
-
Механические процессы
-
Глава XVIII измельчение твердых материалов
-
Общие сведения
-
Физико-механические основы измельчения.
-
Щековые дробилки
-
Конусные дробилки
-
Валковые дробилки
-
Ударно-центробежные дробилки
-
Барабанные мельницы
-
Кольцевые мельницы
-
8 Сепаратор Материал
-
Мельницы для сверхтонкого измельчения
-
Глава XIX
-
Классификация и сортировка материалов
-
Грохочение
-
Гидравлическая классификация и воздушная сепарация
-
Глава XX
-
328 Расчет 343
-
Основные процессы и аппараты химической технологии