logo
Остапчук, Рибак Системи технологій

6.4. Технологічна схема вироблення електроенергії

Загальну схему вироблення електроенергії на теплових елект­ростанціях можна представити такою послідовністю. При зго­рянні палива утворюється теплота, яка перетворює воду в пару високого тиску (робочий агент). Пара надходить до турбіни, що знаходиться за звичай на одній осі з генератором електричної енергії. Від генератора електроенергія надходить до роз­подільних мереж, які передають її споживачам. На гідроелектро­станціях як робочий агент для приводу гідравлічних турбін вико­ристовується вода завдяки певному тиску, що створюється греб­лею. На вітроелектростанціях для приводу електрогенератора використовується течія повітря.

Однак, не зважаючи на цей загальний принцип одержання електроенергії, кожна з цих електростанцій має особливості в конструкціях турбін, генераторів, способах одержання робочого агенту тощо.

306

Більшість електроенергії виробляють на теплових електрос­танціях. Комплекс машин і споруд, які призначені для вироб­ництва електричної енергії називають електростанціями. В за­лежності від джерела енергії відрізняють теплові, гідроелект­ричні, атомні, вітрові, магнітогідродинамічні генератори, тощо. Загальною ланкою для всіх електростанцій незалежно від їх типу є двигун, де відбувається перетворення різних видів енергії в механічну. Другою ланкою є генератор електричної енергії. Для передачі електроенергії є третя ланка — електричні мережі. До теплових відносять конденсаційні, теплофікаційні або теп­лоелектроцентралі, геотермальні, газотурбінні і дизельні. Кон­денсаційні виробляють головним чином електричну енергію. На теплоелектроцентралях перегріта пара при високому тиску і тем­пературі після перших ступенів парової турбіни, частково відби­рається для потреб теплофікації. Конденсаційні електростанції виробляють тільки електроенергію. Відпрацьована пара після турбін перетворюється при глибокому вакуумі у воду, яка спря­мовується в котельні агрегати в якості живильної води, що дає значну економію енергії.

В теплофікаційних електростанціях відпрацьована після турбін пара використовується для централізованого тегшоспоживання. Геотермальні використовують глибинну теплоту Землі. В них відсутні котельні, пристрої для подачі палива, золоуловлювачі, тощо, що значно спрощує їх експлуатацію зменшує затрати на будів­ництво. Природні умови України, не мають значної перспективи для будівництва геотермальних електростанцій. Газотурбінні елек­тростанції використовують спалювання газу для приводу турбін. Дизельні електростанції для приводу електрогенераторів викорис-товують двигуни внутрішнього згоряння, в основному — дизелі, їх широко використовують і як транспортні машини. Основними ви­дами палива для електростанції є кам'яне вугілля, мазут, газ, дрова, кокс, тощо. Гідроелектричні станції використовують енергію течії води для приводу гідротурбін з'єднаних з електрогенераторами.

На атомних АЕС джерелом енергії є атомний реактор, в яко­му теплота утворюється в результаті ланцюгової ядерної реакції ділення ядер деяких важких ізотопів урану та плутонію. Теплота,

І що утворюється в активній зоні реактора, нагріває через перший контур теплопередачі парогенератор. Потім пара по другому

контурі направляється до турбіни, яка приводить в дію електро-генератор. Основне електротехнічне устаткування на АЕС таке

307

як і на звичайних теплових. На гідроелектростанціях двигуном для генераторів є гідравлічні турбіни.

Вітроелектричні станції перетворюють енергію течій повітря за допомогою вітродвигуна в електричну енергію також за допо­могою електрогенераторів.

В магнітогідродинамічних генераторах (МГД-генераторах) енергія електропровідного середовища (рідини або газу) безпосе­редньо перетворюється в електричну енергію. МГД-генератори використовують як аварійні або в бортових системах електрожив­лення. Нагрітий газ до температури в декілька тисяч градусів стає іонізованим і добре проводить електроенергію. Взаємодія струми­ни такого газу з магнітним полем породжує електричний струм.