logo search
Остапчук, Рибак Системи технологій

4.5.3. Конструкції теплообмінників

Теплообмінні апарати можна класифікувати за призначенням (підігрівники, охолоджувачі і т.д.), за числом ходів теплоносія, за схемами різного поєднання прямотоку, протитечійності і пере­хресної течії.

Незважаючи на те, що теплообмінні апарати розрізняють за принципом дії, будовою, типом теплоносіїв і призначенням, мож­на сформулювати ще й основні вимоги теплового, гідроди­намічного, експлуатаційного, конструктивного і технічного ха­рактеру, які треба враховувати при виборі типу, розрахунку і конструктивній розробці теплообмінної апаратури.

Основна вимога, з точки зору теплопередачі та гідродинамі­ки, є досягнення в теплообміннику максимального коефіцієнта теплопередачі при мінімальному гідравлічному опорі. Підвищен­ня коефіцієнта теплопередачі дає можливість зменшити габари­ти, вагу, вартість теплообмінників та витрати металу. Зменшення гідравлічного опору апарата призводить до зниження витрат енергії на прокачування теплоносіїв. Проте обидві ці вимоги зви­чайно перебувають у взаємній суперечності. Тому, конструюючи теплообмінники, доводиться шукати оптимальне розв'язання цієї суперечливості.

При виборі типу теплообмінного апарата і конструюванні його окремих вузлів часто вирішальним фактором служать експ­луатаційні вимоги:

а) мала забрудненість поверхні теплообміну, зручність очи­щення, огляду і ремонту;

б) герметичність поверхні теплообміну, що дає можливість уникнути змішування обох теплоносіїв;

в) надійність у роботі.

Конструктивні вимоги до теплообмінних апаратів:

а) надійна компенсація неоднакових температурних наванта­жень корпуса і поводжень корпуса і поверхні теплообміну;

б) компактність, що визначає його масові і геометричні дані (компактність характеризується відношенням поверхні тепло-

167

обміну F до об'єму теплообмінного апарата V); чим більше це відношення, тим компактніший апарат).

в) загальна простота і технологічність конструкції тепло­обмінного апарата.

Кожухотрубні теплообмінники. Найпоширеніші в промисло­вості, дають можливість створювати значні поверхні теплообміну в одному апараті, прості у виготовленні і надійні в експлуатації.

На рис. 4.23 зображено вертикальний кожухотрубний однохо-довий теплообмінник, що складається з корпусу 2, приварених до нього нерухомих трубних решіток 3, пучка труб 4, кінці яких закріплені в трубних решітках розвальцюванням або зварюван­ням. До трубних решіток прикріплені кришки 1. Один з тепло­носіїв І рухається всередині труб, а другий II — у просторі між ко­жухом і трубами (в міжтрубному просторі).

Через малу швидкість руху теплоносіїв одноходові тепло­обмінники мають низькі коефіцієнти тепловіддачі. Щоб збільши­ти швидкість руху теплоносіїв, застосовують багатоходові тепло-

168

обмінники (рис. 4.24), в яких пучок труб за допомогою попереч­них перегородок 1, встановлених у кришках, розділений на кілька секцій (ходів), по яких теплоносій І проходить послідовно. Швидкість руху теплоносія II в міжтрубному просторі підвищу­ють, встановлюючи ряд сегментних перегородок 2. З двох тепло­носіїв, що рухаються в трубах і в міжтрубному просторі, треба збільшувати швидкість руху в першу чергу того, в якого при теп­лообміні вищий термічний опір.

Труби в трубних решітках розміщують переважно по периме­тру правильного шестикутника (рис. 4.25, а). Для даного випад­ку, обчислюючи загальну кількість п труб в теплообміннику, ви­ходять з кількості труб а, розміщених на стороні найбільшого шестикутника

(4.33)

Кількість труб, розміщених по діагоналі найбільшого шести­кутника, знаходять за формулою

, (4.34)

При закріплені труб у трубних решітках розвальцьовуванням крок t розміщення труб вибирають залежно від їхнього зовніш­нього діаметра в межах

(4.35)

При закріплені труб зварюванням крок розміщення труо ви-

бирають меншим

Діаметр D теплообмінника визначають із співвідношення

(4.36)

Іноді труби розміщують по периметрах квадратів (рис. 4.25, б) або по концентричних колах (рис. 4.25, в).

При проектуванні кожухотрубних теплообмінників тепло­носій, що найбільше забруднює поверхню теплообміну, спрямо­вують у труби (трубний простір), які легше очищати.

При різниці температур між кожухом і трубами понад 50 °С або при значній довжині труб застосовують кожухотрубні тепло­обмінники з різними компенсаторами температурних наванта­жень.

Двотрубні теплообмінники типу "труба в трубі". Тепло­обмінники цього типу складаються з кількох послідовно з'єдна­них елементів, утворених двома концентрично розміщеними тру-

169

бами. Один теплоносій рухається у внутрішніх трубах, а дру­гий — в кільцевому зазорі між внутрішніми і зовнішніми трубами.

Заглибні теплообмінники звичайно виготовляють у вигляді змі­йовиків. Змійовик занурений в рідину, яку нагрівають або охолод­жують теплоносієм, що рухається всередині змійовика. Коефіцієнт теплопередачі в цих теплообмінниках порівняно низький, але через простоту виготовлення вони набули значного поширення.

Зрошувальні теплообмінники складаються із змійовиків, зро­шуваних ззовні рідким теплоносієм (звичайно водою), і застосо­вуються переважно як холодильники. Змійовики роблять з пря­мих горизонтальних труб розташованих одна над одною і послідовно сполучених між собою калачами. Зверху змійовики зрошують водою, яка рівномірно розподіляється коритечком із зубчастими краями.

Спіральні теплообмінники. В спіральних теплообмінниках по­верхню теплообміну утворюють два зігнуті у вигляді спіралей ме­талеві листи внутрішні кінці яких приварені до перегородки. Зовнішні кінці листів зварені один з одним. Між листами утворю­ються канали прямокутного перерізу, в яких рухаються теплоносії. З торців канали закриті плоскими кришками 4 на прокладках.

Пластинчасті теплообмінники використовують у промисло­вості для пастеризації і охолодження молока, пива, вина та інших продуктів. Поверхню теплообміну в них створюють гофровані па­ралельні пластинки, встановлені на горизонтальних штангах. Кінці штанг закріплені на стояках. У складеному вигляді пластини стиснуті між натискною плитою за допомогою гвинта. Ущільнені пластини гумовими прокладками. Велика прокладка обмежує ка-

170

нал для проходження рідини між пластинами. Малі кільцьові про­кладки ущільнюють отвори, крізь які протитєчійно до рідини над­ходить і виходить інша рідина II. Продукт у пластинчастому теп­лообміннику обробляється тонким шаром (3...6) млі, що сприяє інтенсифікації процесу. Завдяки рифленій поверхні пластин при порівняно малій швидкості руху рідини (0,3...0,8) м/с за рахунок штучної турбулізації потоку досягають високих коефіцієнтів теп­лопередачі при незначному гідравлічному опорі.

Рис. 4.26. Поверхня з ребристих труб ребристого теплообмінника

Конструктивні, експлуатаційні та теплотехнічні переваги пластинчастих теплообмінників сприяють дедалі ширшому за­стосуванню. Недолік їх — велика кількість довгих ущільнюваль­них прокладок.

Ребристі теплообмінники. Для більшої компактності тепло­обмінників використовують вторинні поверхні (ребра) з боку теп­лоносія, що відрізняється низьким значенням коефіцієнта теп­ловіддачі. На рис. 4.26 зображена поверхня з оребрених труб, утво­рена за допомогою круглих ребер, закріплених на зовнішній по­верхні круглих труб. Таку конструкцію часто використовують у теплообмінниках газ — рідина або газ — пара, в яких при опти­мальній конструкції поверхня з боку газу має бути максимальною, наприклад, в колориферах для нагрівання повітря парою в сушиль­них установках, а також в апаратах повітряного охолодження.

Оболонкові теплообмінники. В них нагрівання і охолодження здійснюють поряд з іншими технологічними процесами. Поверх­ню теплообміну в них утворюють стінки самого апарата (рис. 4.27). До корпуса 2 кріпиться оболонка 3 за допомогою фланця 1.

171