2.3.3. Влияние вращения на внутреннюю баллистику рдтт
Стабилизация твердотопливных ракет или их ступеней вращением распространена в ракетной технике. При этом на внутреннюю баллистику РДТТ оказывает влияние несколько факторов.
При достаточной большой скорости вращения РДТТ увеличивается скорость горения под действием ускорения, направленного под прямым (или близким к прямому, 70...90°) углом к поверхности горения.
Во вращающихся РДТТ с одним центральным соплом уменьшается расход газа через это сопло. Уменьшение расхода является функцией
; , где Г =v; v - таигенциальная скорость; значение Г в закрученном потенциальном течении постоянно; — нормированная функция тока. Для потенциального течения с «вакуумным» ядром, в котором Г=0 при 0, имеем
.
Приближенно эффективный коэффициент расхода центрального сопла уменьшается пропорционально
[]=[],
где — угловая скорость двигателя.
В зоне ядра потока в канале заряда газ вращается подобно твердому цилиндру с угловой скоростью, существенно превышающей угловую скорость двигателя. И это приводит к повышенному эрозионному воздействию на центральную часть тепловой защиты переднего дна.
Вращение РДТТ не оказывает влияния на расход газа через периферийные сопла, расположенные на сопловой крышке на некотором расстоянии от оси. Газ в канале РДТТ с периферийными соплами вращается почти с той же угловой скоростью, что и двигатель.
Воздействие ускорения и уменьшения расхода через центральное сопло иллюстрируется данными, приведенными на рис. 2.6, для экспериментального двигателя с принудительным вращением (топливо смесевое: 85 % перхлората аммония и 15 % связки, размеры заряда 126/85 — 40, площадь горящей поверхности постоянная).
3. Во вращающемся РДТТ имеет место перепад давлений по поперечному сечению: давление на периферии превышает давление в центре. На торцевой поверхности горения вблизи оси образуется каверна.
4. Увеличение площади горящей поверхности вследствие деформации заряда и корпуса вращающегося РДТТ:
,
где — тангенциальная деформация на внутренней поверхности одноканального заряда.
При этом увеличивается также площадь проходного сечения канала. В случае одноканального заряда это увеличение порядка 1 + 2т, и оно приводит к пренебрежимо малому уменьшению давления в РДТТ.
На участках заряда, на которых при вращении возникает деформация растяжения, скорость горения ' увеличивается. В одноканальных зарядах таких участков нет.
5. Вращение РДТТ оказывает влияние на скорость обтекания и, следовательно, на эрозионное горение торцевых участков горящей поверхности. На поверхности, параллельной оси вращения, эрозионная составляющая скорости горения не изменяется.
При создании вращающихся РДТТ предъявляются повышенные требования к прочности корпуса и заряда, а также к тепловой защите, обусловленные следующим:
а) из-за вращения газа в канале одноканального заряда РДТТ с центральным соплом увеличивается эрозионное воздействие на центральную область переднего дна;
Рис. 2.6. Давление в РДТТ при отсутствии вращения (1), при вращении с периферийными соплами (2) и при вращении с одним центральным соплом (3); частота вращения примерно 11700 об /мин.
б) из-за увеличения алгомерации и осаждения шлаков, в том числе несгоревшего металла. Это приводит также к увеличению пассивной массы после выгорания заряда.
Нерасчетный режим работы вращающегося РДТТ может возникнуть и из-за образования центров ускоренного горения баллиститного топлива (углублений в местах скопления конденсированной фазы), приводящих к снижению прочности заряда.
- Рабочие процессы
- В ракетных двигателях
- Твердого топлива
- Справочник
- Глава 1. Ракетные двигатели твердого топлива
- 1.2 Твердые ракетные топлива
- 1.3 Соновные элементы конструкции
- 1.3.1 Корпус и сопло
- 1.3.2 Заряд твердого топлива
- 1.3.3 Устройства создания управляющих усилий
- 1.3.4. Воспламенительное устройство
- 1.3.5. Узел отсечки тяги
- 1.4. Моделирование рабочих процессов в рдтт
- Глава 2. Горение заряда твердого топлива
- 2.1. Скорость горения твердого топлива
- 2.2. Термодинамический расчет процессов горения и истечения
- 2.3. Изменение давления в рдтт во времени
- 2.3.1. Периоды работы рдтт
- 2.3.2. Неустойчивые режимы работы рдтт
- 2.3.3. Влияние вращения на внутреннюю баллистику рдтт
- 2.3.4. Анализ отказов двигателя при стендовых испытаниях
- 2.3.5. Горение старого заряда в камере прямоточного двигателя
- 2.4. Регулирование рдтт
- 3.1. Одномерные течения
- 3.1.2. Газодинамические функции
- 3.2. Местные сопротивления в рдтт
- 3.2.1. Течение газа в предсопловом объеме
- 3.3. Течение газа в нале заряда твердого топлива
- 3.3.1. Течение газа в цилиндрическом канале
- 3.3.2. Течение газа в каналах нецилиндрических форм
- 3.4. Разброс параметров рдтт
- 3.5. Выход рдтт на режим установившейся работы
- 3.5.1 Воспламенение заряда твердого топлива
- 3.5.2. Заполнение застойной зоны
- 3.5.3. Натекание в отсек между разделяющимися ступенями
- 3.6. Переходные процессы при отсечке тяги рдтт
- 3.6.1. Отсечка тяги путем вскрытия дополнительных сопел
- 3.6.2. Отделение части двигателя
- 3.6.3. Гашение заряда твердого топлива
- 3.6.4. Волновое движение газа
- 3.7. Двухмерное течение газа в канале заряда
- 4.1. Профилирование сопел рдтт
- 4.1.1. Дозвуковая часть сопла
- 4.1.2. Коэффициент расхода сопел
- 4.1.3. Профилирование сверхзвуковой части сопла для однофазных продуктов сгорания твердого топлива
- 4.1.4. Течение газа с частицами
- 4.2. Потери удельного импульса в сопле
- 4.2.1. Составляющие потерь удельного импульса
- 4.2.2. Отсутствие кристаллизации в сопле
- 4.2.3. Одномерное течение
- 4.2.4. Уточнение потерь на физическую неравновесность многофазного потока
- 4.2.5. Потери удельного импульса многофазного потока из-за утопленности сопла
- 4.3. Эксцентриситет реактивной силы
- 4.4. Характеристики устройств создания управляющих усилий
- 4.4.1. Обтекание выдвижного щитка и дефлектора
- 4.4.2. Вдув газа и впрыск жидкости в сопло
- 4.4.3. Истечение недорасширенной струи навстречу сверхзвуковому потоку
- 4.5. Отрыв потока от стенок сопла
- 4.6. Высотные испытания рдтт
- 4.6.1. Структура стендов для высотных испытаний
- 4.6.2. Пусковое давление цилиндрического выхлопного диффузора
- 4.6.3. Изменение давления в двигателе, барокамере и выхлопном диффузоре
- 4.6.4 Обработка результатов высотных испытаний
- Глава 5. Взаимодействие продуктов сгорания с материалами тракта рдтт
- 5.1. Компоненты воздействия
- 5.2. Модели конвективного теплообмена
- 5.2.1. Интегральные соотношения теории пограничного слоя
- 5.2.2. Интегральная теория пограничного слоя
- 5.2.3. Моделирование пристенной турбулентности
- 5.2.4. Конвективный теплообмен на утопленной части сопла
- 5.2.5. Конвективный теплообмен за минимальным сечением сопла с цилиндрической горловиной
- 5.2.6. Конвективный теплообмен в возмущенной области при несимметричном вдуве газав закритическую часть сопла
- 5.2.7. Нестационарный теплообмен в рдтт
- 5.2.8. Теплообмен на регуляторах расхода газа
- 5.2.9. Теплообмен в многофазных течениях
- 5.2.10. Свободная конвекция в рдт
- 5.3. Радиационный теплообмен в рдтт
- 5.4. Воздействие газовых потоков на композиционные материалы
- 5.5. Воздействие газовых потоков
- 5.6. Оздействие многофазных потоков на композиционные материалы
- 5.7. Тепловое состояние элементов рдтт
- 5.8. Теплофизические и некоторые другие характеристики материалов
- 5.9. Результаты испытаний тепловой защиты рдтт
- Глава 1. Ракетные двигатели твердого топлива……….……………………….8
- Глава 2. Горение заряда твердого топлива ………………………………..44
- Глава 3. Газодинамические процессы в рдтт………………………………...66
- Глава 4. Газодинамические характеристики соплового блока…………….113
- Глава 5. Взаимодействие продуктов сгорания с материалами