1.3.4. Воспламенительное устройство
Система воспламенения (рис. Д .13) включает в себя: первичный источник тепловой энергии; устройство, формирующее и направляющее горячий поток; воспламенительное устройство (ВУ), обеспечивающее воспламенение заряда твердого топлива.
В качестве первичных источников тепловой энергии в системах воспламенения наиболее широкое применение получили электрозапалы или пиротехнические патроны. Они имеют мостик накаливания, находящийся внутри инициирующего заряда. Инициирующий заряд представляет собой навеску дымного пороха или специального пиротехнического состава (например, гранулированный бездымный порох 50 %, соли свинца 25 %, перхлорат калия 25 %). В процессе сгорания инициирующего заряда давление в пиропатроне достигает 5…15 МПа, а общее время работы I'от момента подачи тока на мостик накаливания — 10...1,5 • 102 с.
Горячий газ, возникающий при вспышке инициирующего заряда, по направляющему устройству поступает к ВУ. Направляющие устройства в основном представляют собой полые трубки различных конструкций с диаметром канала 5 ...10 мм и длиной 50...200 мм.
ВУ состоит из корпуса, первичного воспламенительного состава, основного воспламенительного состава, элементов крепления. Для крупногабаритных РДТТ в качестве ВУ применяют пусковые двигатели.
Конструкция корпуса ВУ должна удовлетворять следующим основным требованиям.
|1. Корпус должен быть достаточно прочным, чтобы не разрушиться от внутреннего давления со взрывом, сохранить свою конструкцию до конца работы ВУ и сгореть во время горения топливного заряда. В РДТТ многоразового использования ВУ не сгорает.
2. Конструкция корпуса должна герметизировать расположенный в нем пиротехнический состав во время хранения, транспортировки и эксплуатации воспламенителя.
3. Конструкция корпуса должна обеспечивать амортизацию ударных нarpyзок, действующих на воспламенительный состав при эксплуатации ВУ.
При сгорании пиротехнического состава в ВУ развивается давление до 1…З,0, МПа. Через многочисленные отверстия в корпусе после разрушения обтюрирующей оболочки происходит истечение газов в свободный объем камеры сгорания РДТТ.
Суммарная площадь отверстий для истечения газов (= 1) определяется исходя из максимального давления, допускаемого прочностью корпуса.
В малогабаритных РДТТ применяются ВУ замкнутого объема, так называемые коробчатые воспламенители. Коробчатый воспламенитель состоит из небольшого металлического или пластмассового корпуса, в котором находятся электрозапал и воспламенительный состав. В качестве воспламенительного состава используется гранулированный дымный порох, пиротехнические смеси.
Рис. 1.13. Воспламенительное устройство РДТТ:
1 - первичный источник горячих газов; 2 - направляющее устройство; 3 - заряд пиротехнического топлива (в таблетках); 4 — герметизирующая оболочка ВУ; 5 - корпус ВУ; 6 - промежуточный заряд
Для воспламенения зарядов крупногабаритных двигателей основной воспламенительный заряд выполняется из быстрогорящего твердого топлива (рис. 1.14). Поток продуктов сгорания формируется сопловым насадком и направляется на заряд РДТТ. Учитывая малое время горения воспламенительного состава (0,1...0,3 с), конструкцию его заряда выполняют с развитой поверхностью горения.
Масса воспламенительного устройства с зарядом из таблеток пиротехнического топлива (см. рис. 1.13) в первом приближении пропорциональна средней поверхности горения твердотопливного заряда (S т/рте ~ W): т2,2W2/3, где mву измеряется в кг, a W в м3.
Расход из воспламенительного ГГ (см. рис. 1.14) пропорционален расходу из РДТТ на установившемся режиме работы: mву 0,084m.
Рис. 1.14. Воспламенительное устройство с многоканальной шашкой твердого топлива:
1 - корпус; 2 - каналы; 3 — заряд быстрогорящего высокоэнергетического твердого топлива; 4 -отверстия; 5 — пирозапал; 6 — фланец; 7 — каучуковая лента.
- Рабочие процессы
- В ракетных двигателях
- Твердого топлива
- Справочник
- Глава 1. Ракетные двигатели твердого топлива
- 1.2 Твердые ракетные топлива
- 1.3 Соновные элементы конструкции
- 1.3.1 Корпус и сопло
- 1.3.2 Заряд твердого топлива
- 1.3.3 Устройства создания управляющих усилий
- 1.3.4. Воспламенительное устройство
- 1.3.5. Узел отсечки тяги
- 1.4. Моделирование рабочих процессов в рдтт
- Глава 2. Горение заряда твердого топлива
- 2.1. Скорость горения твердого топлива
- 2.2. Термодинамический расчет процессов горения и истечения
- 2.3. Изменение давления в рдтт во времени
- 2.3.1. Периоды работы рдтт
- 2.3.2. Неустойчивые режимы работы рдтт
- 2.3.3. Влияние вращения на внутреннюю баллистику рдтт
- 2.3.4. Анализ отказов двигателя при стендовых испытаниях
- 2.3.5. Горение старого заряда в камере прямоточного двигателя
- 2.4. Регулирование рдтт
- 3.1. Одномерные течения
- 3.1.2. Газодинамические функции
- 3.2. Местные сопротивления в рдтт
- 3.2.1. Течение газа в предсопловом объеме
- 3.3. Течение газа в нале заряда твердого топлива
- 3.3.1. Течение газа в цилиндрическом канале
- 3.3.2. Течение газа в каналах нецилиндрических форм
- 3.4. Разброс параметров рдтт
- 3.5. Выход рдтт на режим установившейся работы
- 3.5.1 Воспламенение заряда твердого топлива
- 3.5.2. Заполнение застойной зоны
- 3.5.3. Натекание в отсек между разделяющимися ступенями
- 3.6. Переходные процессы при отсечке тяги рдтт
- 3.6.1. Отсечка тяги путем вскрытия дополнительных сопел
- 3.6.2. Отделение части двигателя
- 3.6.3. Гашение заряда твердого топлива
- 3.6.4. Волновое движение газа
- 3.7. Двухмерное течение газа в канале заряда
- 4.1. Профилирование сопел рдтт
- 4.1.1. Дозвуковая часть сопла
- 4.1.2. Коэффициент расхода сопел
- 4.1.3. Профилирование сверхзвуковой части сопла для однофазных продуктов сгорания твердого топлива
- 4.1.4. Течение газа с частицами
- 4.2. Потери удельного импульса в сопле
- 4.2.1. Составляющие потерь удельного импульса
- 4.2.2. Отсутствие кристаллизации в сопле
- 4.2.3. Одномерное течение
- 4.2.4. Уточнение потерь на физическую неравновесность многофазного потока
- 4.2.5. Потери удельного импульса многофазного потока из-за утопленности сопла
- 4.3. Эксцентриситет реактивной силы
- 4.4. Характеристики устройств создания управляющих усилий
- 4.4.1. Обтекание выдвижного щитка и дефлектора
- 4.4.2. Вдув газа и впрыск жидкости в сопло
- 4.4.3. Истечение недорасширенной струи навстречу сверхзвуковому потоку
- 4.5. Отрыв потока от стенок сопла
- 4.6. Высотные испытания рдтт
- 4.6.1. Структура стендов для высотных испытаний
- 4.6.2. Пусковое давление цилиндрического выхлопного диффузора
- 4.6.3. Изменение давления в двигателе, барокамере и выхлопном диффузоре
- 4.6.4 Обработка результатов высотных испытаний
- Глава 5. Взаимодействие продуктов сгорания с материалами тракта рдтт
- 5.1. Компоненты воздействия
- 5.2. Модели конвективного теплообмена
- 5.2.1. Интегральные соотношения теории пограничного слоя
- 5.2.2. Интегральная теория пограничного слоя
- 5.2.3. Моделирование пристенной турбулентности
- 5.2.4. Конвективный теплообмен на утопленной части сопла
- 5.2.5. Конвективный теплообмен за минимальным сечением сопла с цилиндрической горловиной
- 5.2.6. Конвективный теплообмен в возмущенной области при несимметричном вдуве газав закритическую часть сопла
- 5.2.7. Нестационарный теплообмен в рдтт
- 5.2.8. Теплообмен на регуляторах расхода газа
- 5.2.9. Теплообмен в многофазных течениях
- 5.2.10. Свободная конвекция в рдт
- 5.3. Радиационный теплообмен в рдтт
- 5.4. Воздействие газовых потоков на композиционные материалы
- 5.5. Воздействие газовых потоков
- 5.6. Оздействие многофазных потоков на композиционные материалы
- 5.7. Тепловое состояние элементов рдтт
- 5.8. Теплофизические и некоторые другие характеристики материалов
- 5.9. Результаты испытаний тепловой защиты рдтт
- Глава 1. Ракетные двигатели твердого топлива……….……………………….8
- Глава 2. Горение заряда твердого топлива ………………………………..44
- Глава 3. Газодинамические процессы в рдтт………………………………...66
- Глава 4. Газодинамические характеристики соплового блока…………….113
- Глава 5. Взаимодействие продуктов сгорания с материалами