3.3.1. Течение газа в цилиндрическом канале
Установившееся течение продуктов сгорания в цилиндрическом канале с подводом массы определяется системой уравнений:
;
;
;
,
где П — периметр горящего контура*
Если ввести газодинамические функции, то получим
;
; ;
.
Граничные условия таковы:
При х = 0 ;
При х=L .
Значение на выходе канала определяется по уравнению неразрывности (см. п. 3.2.1).
На донном конце заряда (х = 0)
Р=Ро=Рк; Т = Т0;
p=Po=PK/(RT0).
Из первого уравнения исходной "системы и граничного условия (х = 0) следует ряд соотношений, связывающий параметры потока в сечении, характеризуемом приведенной скоростью , с давлениемрк и температурой То в донной части двигателя:
; ;
; ;
.
В частности, из этих уравнений следует, что перепад давлений по всей длине заряда и коэффициент восстановления полного давления в канале(а также изменение других газодинамических характеристик) не зависят от распределения массоприхода по длине канала и равны (см. табл. 3.3):
; .
Рассеяние полной энергии в канале обусловлено смешением двух потоков, имеющих различные скорости в осевом направлении: основного течения и притока газа от горящей поверхности со скоростью.
Из уравнения неразрывности получаем
.
Неопределенность по рк устраняется с помощью граничного условия на сопловом конце заряда х =L,:
,
где S=ПL.
Запишем соотношение для рк в обычном виде
,
где - коэффициент средней по каналу скорости горения;
— коэффициент восстановления полного давления в двигателе (см. табл. 3.3).
В первом приближении скорость горения одинакова по всему канаЛу ;. При этом имеем
или ,
приблизительно
.
Эти приближенные зависимости могут быть использованы для последующего расчета изменения скорости горения по длине канала вследствие падения статического давления и увеличения эрозионной соствляющей (см. п. 2.3.5).
Коэффициент средней по поверхности скорости горения твердого топлива обычно больше единицы при>п. Он рассчитывается методом численного интегрирования при заданной зависимости f (табл. 3.4 для топлива JPN).
Таблица 3.4
Характеристики эрозионного горения баллиститного
топлива JPN по поверхности цилиндрического канала
| 0 | 0,2 | 0,4 | 0,6 | 0,8 | 1,0 |
| 1 | 0,99 | 1,06 | 1,12 | 1,15 | 1,16 |
| 1 | 1,05 | 1,40 | 1,65 | 1,75 | - |
- Рабочие процессы
- В ракетных двигателях
- Твердого топлива
- Справочник
- Глава 1. Ракетные двигатели твердого топлива
- 1.2 Твердые ракетные топлива
- 1.3 Соновные элементы конструкции
- 1.3.1 Корпус и сопло
- 1.3.2 Заряд твердого топлива
- 1.3.3 Устройства создания управляющих усилий
- 1.3.4. Воспламенительное устройство
- 1.3.5. Узел отсечки тяги
- 1.4. Моделирование рабочих процессов в рдтт
- Глава 2. Горение заряда твердого топлива
- 2.1. Скорость горения твердого топлива
- 2.2. Термодинамический расчет процессов горения и истечения
- 2.3. Изменение давления в рдтт во времени
- 2.3.1. Периоды работы рдтт
- 2.3.2. Неустойчивые режимы работы рдтт
- 2.3.3. Влияние вращения на внутреннюю баллистику рдтт
- 2.3.4. Анализ отказов двигателя при стендовых испытаниях
- 2.3.5. Горение старого заряда в камере прямоточного двигателя
- 2.4. Регулирование рдтт
- 3.1. Одномерные течения
- 3.1.2. Газодинамические функции
- 3.2. Местные сопротивления в рдтт
- 3.2.1. Течение газа в предсопловом объеме
- 3.3. Течение газа в нале заряда твердого топлива
- 3.3.1. Течение газа в цилиндрическом канале
- 3.3.2. Течение газа в каналах нецилиндрических форм
- 3.4. Разброс параметров рдтт
- 3.5. Выход рдтт на режим установившейся работы
- 3.5.1 Воспламенение заряда твердого топлива
- 3.5.2. Заполнение застойной зоны
- 3.5.3. Натекание в отсек между разделяющимися ступенями
- 3.6. Переходные процессы при отсечке тяги рдтт
- 3.6.1. Отсечка тяги путем вскрытия дополнительных сопел
- 3.6.2. Отделение части двигателя
- 3.6.3. Гашение заряда твердого топлива
- 3.6.4. Волновое движение газа
- 3.7. Двухмерное течение газа в канале заряда
- 4.1. Профилирование сопел рдтт
- 4.1.1. Дозвуковая часть сопла
- 4.1.2. Коэффициент расхода сопел
- 4.1.3. Профилирование сверхзвуковой части сопла для однофазных продуктов сгорания твердого топлива
- 4.1.4. Течение газа с частицами
- 4.2. Потери удельного импульса в сопле
- 4.2.1. Составляющие потерь удельного импульса
- 4.2.2. Отсутствие кристаллизации в сопле
- 4.2.3. Одномерное течение
- 4.2.4. Уточнение потерь на физическую неравновесность многофазного потока
- 4.2.5. Потери удельного импульса многофазного потока из-за утопленности сопла
- 4.3. Эксцентриситет реактивной силы
- 4.4. Характеристики устройств создания управляющих усилий
- 4.4.1. Обтекание выдвижного щитка и дефлектора
- 4.4.2. Вдув газа и впрыск жидкости в сопло
- 4.4.3. Истечение недорасширенной струи навстречу сверхзвуковому потоку
- 4.5. Отрыв потока от стенок сопла
- 4.6. Высотные испытания рдтт
- 4.6.1. Структура стендов для высотных испытаний
- 4.6.2. Пусковое давление цилиндрического выхлопного диффузора
- 4.6.3. Изменение давления в двигателе, барокамере и выхлопном диффузоре
- 4.6.4 Обработка результатов высотных испытаний
- Глава 5. Взаимодействие продуктов сгорания с материалами тракта рдтт
- 5.1. Компоненты воздействия
- 5.2. Модели конвективного теплообмена
- 5.2.1. Интегральные соотношения теории пограничного слоя
- 5.2.2. Интегральная теория пограничного слоя
- 5.2.3. Моделирование пристенной турбулентности
- 5.2.4. Конвективный теплообмен на утопленной части сопла
- 5.2.5. Конвективный теплообмен за минимальным сечением сопла с цилиндрической горловиной
- 5.2.6. Конвективный теплообмен в возмущенной области при несимметричном вдуве газав закритическую часть сопла
- 5.2.7. Нестационарный теплообмен в рдтт
- 5.2.8. Теплообмен на регуляторах расхода газа
- 5.2.9. Теплообмен в многофазных течениях
- 5.2.10. Свободная конвекция в рдт
- 5.3. Радиационный теплообмен в рдтт
- 5.4. Воздействие газовых потоков на композиционные материалы
- 5.5. Воздействие газовых потоков
- 5.6. Оздействие многофазных потоков на композиционные материалы
- 5.7. Тепловое состояние элементов рдтт
- 5.8. Теплофизические и некоторые другие характеристики материалов
- 5.9. Результаты испытаний тепловой защиты рдтт
- Глава 1. Ракетные двигатели твердого топлива……….……………………….8
- Глава 2. Горение заряда твердого топлива ………………………………..44
- Глава 3. Газодинамические процессы в рдтт………………………………...66
- Глава 4. Газодинамические характеристики соплового блока…………….113
- Глава 5. Взаимодействие продуктов сгорания с материалами