5.2.4. Конвективный теплообмен на утопленной части сопла
Эксперименты по изучению теплообмена на утопленной части выполнены на моделях с пористыми стенками (рис. 5.6). Рабочее тело — холодный очищенный сухой воздух. Значения коэффициента конвективного теплообмена определены методом обращения теплового потока. При малых профиль скорости косинусоидальный (см. подразд. 3.3).Экспериментальное распределение давления на внешней поверхности утопленной части сопла газодинамической модели РДТТ удовлетворительно совпадает с рассчитанным по уравнению Бернулли.
Распределение значений коэффициентов теплробмена по внешней поверхности утопленной части сопла не зависит от продольной координаты s, только для сопла с наибольшим значением приs= начинается рост уровня теплообмена. Подобный характер теплообмена наблюдается при обтекании критической точки — течение градиентное и постоянные значения коэффициентов теплообмена, несмотря на разгон потока.
Рис. 5.6. Схема утопленной части сопла РДТТ:
1 – сеточный имитатор заряда.
Для оценки характера теплообмена на внешней поверхности утопленной части сопла экспериментальные данные для всех значений иисследованных моделей можно представить как функцию параметров шагающего на сопло потока из центрального канала заряда:
,
где ;;- средняя скорость потока в канале заряда перед вершиной сопла.
Значения чисел Стантона для разных точек измерения во всех соплах группируются по кривым, соответствующим значениям т.e. положению свода макета заряда. Зависимости постоянных по внешней поверхности утопленной части сопла чисел Стантона от числа Рейнольдса
; ;
; ;
; .
При =0,45 конвективный теплообмен имеет характер, близкий к ламинарному (St~Re). С ростом значения происходит перестройка режима течения, и при>0,57 теплообмен принимает турбулентный характер (St~Re), причем значение показателя степени в зависимости St=ARem соответствует значению т, полученному в многочисленных экспериментах по теплообмену в отрывных течениях, например для случая обтекания прямоугольной каверны.
Эксперименты, выполненные при отсутствии подвода газа с поверхности имитатора заряда на утопленной части сопла при /Ro=0,57 и l=0,1 и 0,2 м, показали неизменность уровня теплообмена по сравнению с опытными при наличии вдува. Исключение составляет сечение s=0,885, близкое к вершине сопла, в котором уровень теплообмена выше на 70 %. Возможно, что при отсутствии вдува с поверхности заряда над глубоко утопленным соплом (=11,4) сечениеs=0,885 попадает в область присоединения потока к соплу.
Экспериментальные данные по теплообмену на внешней поверхности утопленной части позволяют сделать следующие качественные выводы. В начальные моменты времени работы двигателя (/RQ=0,091...0,146) теплообмен имеет ламинарный характер, практически постоянен по длине внешней поверхности, и его уровень существенно превышает уровень теплообмена, рассчитанного по теории ламинарного пограничного слоя вследствие влияния турбулентности ядра потока.
При Re**>3•103 (Re6,7*105) в области вершины сопла реализуется турбулентный режим в пограничном слое, и рассчитанные значения чисел Стантона по интегральным теориям для градиентного течения на пластине хорошо подтверждаются экспериментальными данными. В процессе выгорания заряда происходит перестройка режима обтекания утопленной части сопла, течение и теплообмен могут стать аналогичными отрывному течению и теплообмену в кавернах. При значениях показатель степени в эмпирическом соотношенииSt= совпадает с значением т=0,25, полученным в экспериментах по теплообмену в отрывных течениях на стенках каверн. Несмотря на нестационарность режима обтекания утопленной части сопла уровень теплообмена несущественно (в пределах 25 %) изменяется с ростом диаметра канала заряда.
Для вершины утопленной части сопла РДТТ и вниз по потоку от нее характерен турбулентный режим в пограничном слое. Результаты экспериментов по распределению давления и теплообмену на входной части утопленного сопла газодинамической модели РДТТ приведены на рис. 5.7. Вершина сопла (точка А) имеет координату х=1,7, а в минимальном сечении х=0. Полученные в экспериментах значения коэффициентов конвективного теплообмена сопоставлены с вычисленными по зависимости (5.1) по значениям скорости Ue, рассчитанными с помощью двухмерной модели течения_газа. В окрестности вершины сопла и вниз по потоку от нее до сечениях х=1,0 существует удовлетворительное совпадение расчетных и экспериментальных величин.
Рис. 5.7, Теплообмен на входной части утопленного сопла РДТТ:
1 — расчет по модели одномерного течения идеального газа; 2 — расчет по модели двухмерного течения; 3 - расчеты по зависимости (5.1); о - экспериментальные данные
- Рабочие процессы
- В ракетных двигателях
- Твердого топлива
- Справочник
- Глава 1. Ракетные двигатели твердого топлива
- 1.2 Твердые ракетные топлива
- 1.3 Соновные элементы конструкции
- 1.3.1 Корпус и сопло
- 1.3.2 Заряд твердого топлива
- 1.3.3 Устройства создания управляющих усилий
- 1.3.4. Воспламенительное устройство
- 1.3.5. Узел отсечки тяги
- 1.4. Моделирование рабочих процессов в рдтт
- Глава 2. Горение заряда твердого топлива
- 2.1. Скорость горения твердого топлива
- 2.2. Термодинамический расчет процессов горения и истечения
- 2.3. Изменение давления в рдтт во времени
- 2.3.1. Периоды работы рдтт
- 2.3.2. Неустойчивые режимы работы рдтт
- 2.3.3. Влияние вращения на внутреннюю баллистику рдтт
- 2.3.4. Анализ отказов двигателя при стендовых испытаниях
- 2.3.5. Горение старого заряда в камере прямоточного двигателя
- 2.4. Регулирование рдтт
- 3.1. Одномерные течения
- 3.1.2. Газодинамические функции
- 3.2. Местные сопротивления в рдтт
- 3.2.1. Течение газа в предсопловом объеме
- 3.3. Течение газа в нале заряда твердого топлива
- 3.3.1. Течение газа в цилиндрическом канале
- 3.3.2. Течение газа в каналах нецилиндрических форм
- 3.4. Разброс параметров рдтт
- 3.5. Выход рдтт на режим установившейся работы
- 3.5.1 Воспламенение заряда твердого топлива
- 3.5.2. Заполнение застойной зоны
- 3.5.3. Натекание в отсек между разделяющимися ступенями
- 3.6. Переходные процессы при отсечке тяги рдтт
- 3.6.1. Отсечка тяги путем вскрытия дополнительных сопел
- 3.6.2. Отделение части двигателя
- 3.6.3. Гашение заряда твердого топлива
- 3.6.4. Волновое движение газа
- 3.7. Двухмерное течение газа в канале заряда
- 4.1. Профилирование сопел рдтт
- 4.1.1. Дозвуковая часть сопла
- 4.1.2. Коэффициент расхода сопел
- 4.1.3. Профилирование сверхзвуковой части сопла для однофазных продуктов сгорания твердого топлива
- 4.1.4. Течение газа с частицами
- 4.2. Потери удельного импульса в сопле
- 4.2.1. Составляющие потерь удельного импульса
- 4.2.2. Отсутствие кристаллизации в сопле
- 4.2.3. Одномерное течение
- 4.2.4. Уточнение потерь на физическую неравновесность многофазного потока
- 4.2.5. Потери удельного импульса многофазного потока из-за утопленности сопла
- 4.3. Эксцентриситет реактивной силы
- 4.4. Характеристики устройств создания управляющих усилий
- 4.4.1. Обтекание выдвижного щитка и дефлектора
- 4.4.2. Вдув газа и впрыск жидкости в сопло
- 4.4.3. Истечение недорасширенной струи навстречу сверхзвуковому потоку
- 4.5. Отрыв потока от стенок сопла
- 4.6. Высотные испытания рдтт
- 4.6.1. Структура стендов для высотных испытаний
- 4.6.2. Пусковое давление цилиндрического выхлопного диффузора
- 4.6.3. Изменение давления в двигателе, барокамере и выхлопном диффузоре
- 4.6.4 Обработка результатов высотных испытаний
- Глава 5. Взаимодействие продуктов сгорания с материалами тракта рдтт
- 5.1. Компоненты воздействия
- 5.2. Модели конвективного теплообмена
- 5.2.1. Интегральные соотношения теории пограничного слоя
- 5.2.2. Интегральная теория пограничного слоя
- 5.2.3. Моделирование пристенной турбулентности
- 5.2.4. Конвективный теплообмен на утопленной части сопла
- 5.2.5. Конвективный теплообмен за минимальным сечением сопла с цилиндрической горловиной
- 5.2.6. Конвективный теплообмен в возмущенной области при несимметричном вдуве газав закритическую часть сопла
- 5.2.7. Нестационарный теплообмен в рдтт
- 5.2.8. Теплообмен на регуляторах расхода газа
- 5.2.9. Теплообмен в многофазных течениях
- 5.2.10. Свободная конвекция в рдт
- 5.3. Радиационный теплообмен в рдтт
- 5.4. Воздействие газовых потоков на композиционные материалы
- 5.5. Воздействие газовых потоков
- 5.6. Оздействие многофазных потоков на композиционные материалы
- 5.7. Тепловое состояние элементов рдтт
- 5.8. Теплофизические и некоторые другие характеристики материалов
- 5.9. Результаты испытаний тепловой защиты рдтт
- Глава 1. Ракетные двигатели твердого топлива……….……………………….8
- Глава 2. Горение заряда твердого топлива ………………………………..44
- Глава 3. Газодинамические процессы в рдтт………………………………...66
- Глава 4. Газодинамические характеристики соплового блока…………….113
- Глава 5. Взаимодействие продуктов сгорания с материалами