3.3.8. Поведение галлия в производстве алюминия
В производстве алюминия из рудного сырья можно выделить три стадии: получение глинозема, электролитическое выделение алюминия из глинозема, электролитическое рафинирование алюминия. Производство глинозема основано на разложении исходных руд (нефелинов или бокситов) щелочными реагентами, в результате чего получают растворы алюмината натрия, из которых затем осаждают гидроксид алюминия Al(OH)3. В промышленной практике приняты два способа разложения алюминиевых руд: спекание с содой и известняком (для бокситовых и нефелиновых руд) и автоклавное выщелачивание растворами гидроксида натрия (метод Байера, применяемый для переработке бокситовых руд). В обоих способах большая часть галлия (70 - 80 %) переходит в алюминатные растворы в виде галлата натрия. При переработке бокситов по способу Байера в оборотных маточных растворах после декомпозиции отношение Ga2O3 к Al2O3 в растворе достигает 0,15 - 0,3 %, что примерно в 30 - 50 раз выше, чем в исходном сырье. Концентрация галлия в оборотном растворе колеблется от 0,07 до 0,15 г/л (рис. 3.3). При способе спекания – растворы, поступающие на карбонизацию, содержат 100 - 120 г/л Al2O3 и 0,05 - 0,07 г/л Ga2O3 (рис. 3.4, 3.5).
Рис. 3.3 – Распределение галлия по продуктам переработки бокситов методом Байера
Возможно извлечение галлия из отходов электролитического производства алюминия из глинозема.
В процессе электролиза галлий выделяется на катоде вместе с алюминием (рис. 3.6), в котором содержится 0,01 - 0,02 % галлия. Часть производимого алюминия для дополнительной очистки поступает на рафинирование методом трехслойного электролиза. При рафинировании галлий концентрируется в остаточном анодном сплаве, в котором его содержание равно 0,1 - 0,3 %. При электролитическом получении алюминия образуется угольная пена, которая содержит 0,02 - 0,03 % галлия. Угольная пена поступает на флотацию для отделения криолита. Пенный продукт флотации, содержащий 0,06 - 0,07 % Ga, может служить источником его получения. На каждые 100 т алюминия приходится 1,5 т угольных съемов, в которых содержится 1 - 1,2 кг галлия.
Рис. 3.4 – Распределение галлия по продуктам переработки бокситов методом спекания
Рис. 3.5 – Распределение галлия по продуктам переработки нефелинов способом спекания
Рис. 3.6 – Распределение галлия по продуктам электролитического получения алюминия из глинозема и рафинирования алюминия
Таким образом, источниками сырья для получения галлия в производстве алюминия являются: оборотные алюминатно-щелочные растворы, осадки последних стадий карбонизации, угольная пена, анодный сплав.
3.3.9. Получение галлиевых концентратов или чернового галлия из алюминатных растворов
Для выделения галлиевых концентратов из обогащенных им продуктов необходимо отделить галлий от основной массы алюминия, не внося существенных изменений в технологию переработки алюминиевого сырья. Поэтому способы извлечения галлия зависят от применяемой технологии производства глинозема.
3.3.10. Выделение галлия из алюминатных растворов процесса Байера
Состав растворов, г/л: 0,1 – 0,3 Ga2O3; 50 – 60 Al2O3; 100 – 120 Na2O. В промышленной практике ряда стран галлий выделяют из алюминатных растворов процесса Байера электролизом с ртутным катодом, предложенным в 1955 г. Бретеком. Другой перспективный метод – цементация галлия на галламе алюминия.
3.3.11. Выделение галлия электролизом на ртутном катоде
Стандартный потенциал системы Ga/Ga(OH)4- в щелочном растворе равен -1,22 В (для системы Al/Al(OH)4- -2,35 В). Однако для бедных по галлию растворов и при высокой концентрации щелочи потенциал галлия сдвигается в отрицательную сторону – до -1,8÷1,9 В. В этих условиях на катоде преимущественно разряжаются ионы водорода (его потенциал в щелочных растворах равен -1,36 В), выход по току галлия практически равен нулю. Для повышения перенапряжения выделения водорода применяют ртутный катод (перенапряжение водорода на ртутном катоде (-1,51 В) в щелочной среде), что позволяет извлекать галлий из растворов электролизом.
Галлий, растворяясь в ртути, образует амальгаму (растворимость галлия в ртути при 30 оС 1,36 %), при этом поверхность ртути обновляется, и происходит деполяризация катода.
Процесс выделения галлия протекает в диффузионном режиме: скорость выделения галлия определяется скоростью доставки галлийсодержащих ионов к катоду и диффузии галлия в объем ртути. Ускорение процесса достигается перемешиванием раствора и ртути, которое эффективно осуществляется в электролизере с вращающимся ртутным катодом. Катодом служит полый вращающийся барабан, часть которого опущена в ртуть. Тонкая пленка ртути покрывает обе поверхности барабана. Анодом служит никелевая сетка в форме полуцилиндра.
Катодный процесс в общем виде может быть представлен реакциями:
Ga(OH)4- = Ga3+ + 4OH– (3.17)
Ga3+ + 3e = Ga0 (3.18)
Ga(OH)4- + 3e = Ga0 + 4OH– (3.19)
Одновременно на катоде происходит также разряд ионов водорода:
2 H2O + 2e = H2 + 2 OH- (3.20)
На аноде разряжаются ионы OH– с выделением кислорода:
2 OH– – 2e = H2O + 1/2O2 (3.21)
Электролиз ведут при 40 - 50 oС и катодной плотности тока 0,3 – 0,5 А/дм2, поверхность анода в 20 раз меньше поверхности катода. В этих условиях достигаются следующие показатели: выход по току для галлия ≈ 3 %, удельный расход электроэнергии 155 кВт∙ч/кг Ga.
Электролиз ведут до концентрации галлия в ртути 0,3 – 0,4 %. Вместе с галлием на катоде выделяется натрий (растворимость в ртути 0,1 – 0,2 %), цинк, кремний и железо. Полученную амальгаму выщелачивают водой при нагревании до 100 oС. Растворяющийся из амальгамы натрий создает щелочность, достаточную для извлечения и галлия.
Из полученного раствора выделяют гидроксид галлия, нейтрализуя раствор до рН = 6 серной кислотой. Осадок гидроксида галлия является галлиевым концентратом. Концентрат выщелачивают раствором гидроксида натрия, из раствора с концентрацией галлия 60 - 80 г/л выделяют галлий электролизом. Алюминатные растворы после выделения галлия на ртутном катоде возвращаются в цикл автоклавного выщелачивания.
К недостаткам рассмотренного способа относятся: токсичность ртути и возможность загрязнения алюминатных растворов ртутью; малая растворимость галлия в ртути, что вызывает большой расход ртути или требует частого вывода амальгамы на переработку.
- 1. Вводная лекция
- 1.1. Общие сведения о редких металлах
- 1.2. Классификация редких металлов
- 1.3. Особенности технологии производства редких металлов из рудного сырья
- 1.4. История развития промышленности редких металлов в стране
- 2. Металлургия тугоплавких редких металлов
- 2.1. Металлургия вольфрама
- 2.1.1 Краткие исторические сведения
- 2.1.2. Основные свойства вольфрама и его соединений
- 2.1.3. Области применения
- 2.1.4. Минералы, руды, концентраты
- 2.1.5. Основные месторождения
- 2.1.6. Способы переработки вольфрамовых концентратов
- 2.1.7. Спекание вольфрамитовых концентратов с содой и селитрой
- 2.1.8. Спекание шеелитовых концентратов с содой и песком
- 2.1.9. Выщелачивание содовых спеков
- 2.1.10. Автоклавно-содовое вскрытие вольфрамитовых и шеелитовых концентратов
- 2.1.11. Разложение вольфрамитовых концентратов растворами едкого натра
- 2.1.12. Переработка растворов вольфрамата натрия
- 2.1.12.1. Очистка растворов от примесей
- 2.1.12.2. Осаждение вольфрамовой кислоты
- 2.1.13. Очистка технической вольфрамовой кислоты
- 2.1.14. Получение паравольфрамата аммония и триоксида вольфрама
- 2.1.15. Экстракционный способ переработки растворов вольфрамата натрия
- 2.1.16. Разложение шеелитового концентрата растворами кислот
- 2.1.17. Получение вольфрамового порошка
- 2.1.17.1. Восстановление вольфрамового ангидрида до металла водородом
- 2.1.17.2. Восстановление трёхокиси вольфрама углеродом.
- 2.1.18. Производство компактного металла методом порошковой металлургии
- 2.1.19. Плавка вольфрама
- 2.1.19.1. Дуговая плавка
- 2.1.19.2. Электронно-лучевая плавка
- 2.2. Металлургия молибдена
- 2.2.1. Краткая историческая справка
- 2.2.2. Свойства молибдена и его соединений
- 2.2.3. Области применения молибдена
- 2.2.4. Минералы, руды и рудные концентраты молибдена
- 2.2.5. Способы переработки молибденовых концентратов
- 2.2.6. Окислительный обжиг молибденитовых концентратов
- 2.2.6.1. Окисление молибденита
- 2.2.6.2. Окисление примесей других сульфидов
- 2.2.6.3. Образование молибдатов
- 2.2.7. Практика обжига
- 2.2.7.1. Обжиг в многоподовых печах.
- 2.2.7.2. Обжиг в печах кипящего слоя (кс)
- 2.2.8. Производство чистого триоксида молибдена
- 2.2.9. Способ возгонки
- 2.2.10. Гидрометаллургический способ переработки огарков
- 2.2.10.1. Аммиачное выщелачивание
- 2.2.10.2. Очистка растворов от примесей меди и железа.
- 2.2.10.3. Выделение молибдена из аммиачных растворов
- 2.2.10.4. Извлечение молибдена из хвостов аммиачного выщелачивания огарков
- 2.2.10.5. Термическое разложение парамолибдата аммония
- 2.2.11. Азотнокислый способ переработки молибденитового концентрата
- 2.2.12. Производство молибденовых порошков
- 2.2.13. Получение молибдена из его триоксида восстановлением водородом
- 2.2.14. Производство компактного молибдена методом порошковой металлургии
- 2.2.14.1. Прессование штабиков
- 2.2.14.2. Гидростатическое прессование
- 2.2.14.3. Спекание штабиков
- 2.2.14.4. Спекание крупных заготовок
- 2.2.15. Плавка молибдена
- 2.3. Металлургия тантала и ниобия
- 2.3.1. Краткая историческая справка
- 2.3.2. Физические и химические свойства тантала и ниобия
- 2.3.3. Свойства важнейших химических соединений тантала и ниобия
- 2.3.4. Области применения
- 2.3.5. Минералы, руды и месторождения руд
- 2.3.6. Металлургическая переработка танталито – колумбитовых концентратов
- 2.3.6.1. Сплавление со щелочами
- 2.3.6.2. Разложение плавиковой кислотой
- 2.3.7. Переработка лопаритовых концентратов
- 2.3.7.1. Способ хлорирования
- 2.3.7.2. Сернокислотный способ
- 2.3.8. Разделение тантала и ниобия и очистка их соединений от примесей
- 2.3.8.1. Дробная кристаллизация комплексных фторидов
- 2.3.8.2. Разделение тантала и ниобия экстракцией
- 2.3.8.3. Разделение тантала и ниобия ректификацией хлоридов
- 2.3.9. Получение металлических тантала и ниобия
- 2.3.9.1. Натриетермическое восстановление тантала и ниобия из фтортанталата калия и фторниобата калия
- 2.3.9.2. Карботермический способ получения ниобия и тантал.
- 2.3.9.3. Алюминотермический способ получения ниобия и тантала из их пятиокисей
- 2.3.9.4. Получение тантала и ниобия восстановлением из хлоридов водородом
- 2.3.9.5. Электролитический способ получения тантала
- 2.3.10. Получение компактных тантала и ниобия
- 2.3.11. Обработка тантала и ниобия давлением
- 2.4. Металлургия титана и ванадия
- 2.4.1. Общие сведения. Краткая историческая справка
- 2.4.2. Важнейшие свойства титана и его химических соединений
- 2.4.3. Области применения титана
- 2.4.4. Титановые минералы, руды и рудные концентраты
- 2.4.5. Производство химических соединений титана
- 2.4.6. Выплавка титанового шлака из ильменита
- 2.4.7. Производство четыреххлористого титана
- 2.4.7.1. Подготовка сырья
- 2.4.7.2. Хлорирование
- 2.4.7.3. Конденсация и разделение продуктов хлорирования
- 2.4.7.4. Очистка технического тетрахлорида титана
- 2.4.8. Производство диоксида титана
- 2.4.8.1. Сернокислотный способ
- 2.4.8.2. Способ «сжигания»
- 2.4.9. Способы производства титана
- 2.4.9.1. Восстановление тетрахлорида титана магнием.
- 2.4.9.2. Восстановление тетрахлорида титана натрием.
- 2.4.9.3. Восстановление диоксида титана кальцием или гидридом кальция
- 2.4.10. Рафинирование титана
- 2.4.10.1. Электролитическое рафинирование титана
- 2.4.10.2. Иодидный метод рафинирования титана
- 2.4.11. Производство компактного титана
- 2.4.11.1. Метод порошковой металлургии
- 2.4.11.2. Плавка титана.
- 2.4.12. История открытия ванадия
- 2.4.13. Физические и химические свойства ванадия
- 2.4.14. Соединения ванадия
- 2.4.15. Области применения ванадия и его соединений
- 2.4.16. Сырьевые источники ванадия
- 2.4.17. Обогащение ванадийсодержащих руд
- 2.4.18. Производство ванадия из железных руд
- 2.4.18.1. Получение ванадиевых шлаков
- 2.4.18.2. Переработка ванадиевого шлака
- 2.4.18.3. Выплавка феррованадия
- 2.4.18.4. Получение металлического ванадия
- 2.4.19. Извлечение ванадия из руд
- 2.4.20. Хлорирование феррованадия
- 2.5. Металлургия циркония и гафния
- 2.5.1. Общие сведения. Краткая историческая справка
- 2.5.2. Важнейшие свойства циркония и гафния и их химических соединений
- 2.5.3. Области применение циркония и гафния
- 2.5.4. Циркониевые минералы, руды и рудные концентраты Весовое содержание циркония в земной коре – 0,025 %. Известно около 20 минералов циркония.
- 2.5.5. Производство химических соединений циркония
- 2.5.5.1. Разложение циркона спеканием с содой
- 2.5.5.2. Разложение циркона спеканием с карбонатом кальция
- 2.5.5.3. Выделение циркония из солянокислых и сернокислых растворов
- 2.5.5.4. Производство фторцирконата калия
- 2.5.5.5. Производство четыреххлористого циркония
- 2.5.6. Разделение циркония и гафния
- 2.5.6.1. Фракционная кристаллизация комплексных фторидов
- 2.5.6.2. Жидкостная экстракция
- 2.5.7. Способы производства циркония и гафния
- 2.5.7.1. Производство губчатого циркония и гафния магниетермическим восстановлением хлорида циркония и гафния
- 2.5.7.2. Получение циркония из его фторцирконата калия восстановлением натрием
- 2.5.7.3. Получение циркония из его диоксида восстановлением кальцием или гидридом кальция
- 2.5.7.4. Получение циркония и гафния электролизом
- 2.5.8. Иодидный метод рафинирования циркония и гафния
- 3. Металлургия рассеянных редких металлов
- 3.1 Металлургия рения
- 3.1.1. Краткая историческая справка
- 3.1.2. Свойства рения
- 3.1.3. Свойства важнейших соединений рения
- 3.1.4. Области применения рения
- 3.1.5. Сырьевые источники рения
- 3.1.6. Распределение рения при переработке молибденитовых концентратов и в производстве меди
- 3.1.7. Извлечение рения из растворов
- 3.1.8. Получение рениевого порошка
- 3.1.9. Получение компактного рения
- 3.2. Металлургия индия
- 3.2.1. Общие сведения
- 3.2.2. Свойства индия
- 3.2.3. Химические соединения индия
- 3.2.4. Применение индия
- 3.2.5. Сырьевые источники индия
- 3.2.6. Поведение индия в производстве цветных металлов
- 3.2.7. Первичная обработка индийсодержащего сырья
- 3.2.8. Получение индиевых концентратов
- 3.2.9. Получение чернового индия
- 3.2.10. Рафинирование чернового индия
- 3.2.10.1. Химические методы
- 3.2.10.2. Электрохимические методы
- 3.2.10.3. Физические методы
- 3.2.10.4. Кристаллофизические методы
- 3.3. Металлургия галлия
- 3.3.1. Краткая историческая справка
- 3.3.2. Свойства галлия и его соединений
- 3.3.3. Химические соединения галлия
- 3.3.4. Области применения галлия
- 3.3.5. Источники получения галлия
- 3.3.6. Поведение галлия при переработке сульфидных цинковых концентратов
- 3.3.7. Поведение галлия при переработке углей
- 3.3.8. Поведение галлия в производстве алюминия
- 3.3.12. Цементация галлия на галламе алюминия
- 3.3.13. Выделение галлия из гидратного осадка второй карбонизации
- 3.3.14. Способы получения металлического галлия
- 3.3.15. Рафинирование чернового галлия
- 3.4. Металлургия таллия, селена и теллура
- 3.4.1. Краткая историческая справка о таллии
- 3.4.2. Свойства таллия и его соединений
- 3.4.3. Химические соединения таллия
- 3.4.4. Области применения таллия
- 3.4.5. Сырьевые источники таллия
- 3.4.6. Поведение таллия при переработке свинцовых, цинковых и медных концентратов
- 3.4.7. Извлечение таллия из обогащенных им продуктов
- 3.4.8. Получение таллиевых концентратов
- 3.4.9. Получение чернового таллия и его рафинирование
- 3.4.10. Общие сведения о селене и теллуре
- 3.4.11. Физические свойства селена и теллура
- 3.4.12. Химические свойства слена и тллура
- 3.4.13. Химические соединения и их свойства
- 3.4.14. Области применения
- 3.4.15. Источники сырья
- 3.4.16. Технология переработки продуктов, содержащих селен и теллур
- 3.4.17. Извлечение селена и теллура из медеэлектролитных анодных шламов
- 3.4.18. Извлечение селена и теллура из шламов сернокислотного и целлюлозно-бумажного производства
- 3.4.19. Рафинирование селена и теллура
- 3.4.20. Техника безопасности при работе с селеном и теллуром
- 3.5. Металлургия германия
- 3.5.1. Краткая историческая справка
- 3.5.2. Свойства германия и его соединений
- 3.5.3. Химические соединения германия
- 3.5.4. Области применения
- 3.5.5. Источники сырья
- 3.5.6. Поведение германия при переработке сульфидного сырья
- 3.5.7. Поведение германия при переработке углей
- 3.5.8. Способы первичной обработки германиевых концентратов
- 3.5.9. Способы осаждения германия
- 3.5.10. Общая схема переработки германиевых концентратов
- 3.5.10.1. Разложение концентратов
- 3.5.10.2. Очистка от примесей
- 3.5.10.3. Получение чистого диоксида германия
- 3.5.10.4. Получение металлического германия Наиболее распространенный способ получения металлического германия – восстановление двуокиси германия водородом.
- 3.5.10.5. Рафинирование металлического германия Рафинирование проводят кристаллизационными способами:
- 4. Металлургия легких редких металлов
- 4.1 Металлургия лития
- 4.1.1. Краткая историческая справка
- 4.1.2. Свойства лития и его соединений
- 4.1.3. Применение лития и его соединений
- 4.1.4. Источники сырья
- 4.1.5. Технология производства соединений лития из рудных концентратов
- 4.1.5.1. Сернокислотный способ
- 4.1.5.2. Сульфатный способ
- 4.1.5.3. Известковый способ
- 4.1.6. Получение чистого хлорида лития
- 4.1.7.1. Получение лития электролитическим способом
- 4.1.8. Рафинирование лития
- 4.2. Металлургия цезия и рубидия
- 4.2.1. Краткая историческая справка
- 4.2.2. Свойства рубидия и цезия
- 4.2.3. Соединения рубидия и цезия
- 4.2.4. Области применения
- 4.2.5. Сырьевые источники цезия и рубидия
- 4.2.6. Переработка поллуцитового концентрата
- 4.2.6.1. Кислотные способы
- 4.2.6.2. Способы спекания
- 4.2.7. Извлечение рубидия и цезия из лепидолитового концентрата
- 4.2.8. Извлечение рубидия из карналлита
- 4.2.9. Получение металлического рубидия и цезия
- 4.2.9.1. Металлотермические способы
- 4.2.9.2. Электролитические способы
- 4.3. Металлургия бериллия
- 4.3.1. Краткие исторические сведения
- 4.3.2. Свойства бериллия и его соединений
- 4.3.3. Области применения бериллия
- 4.3.4. Сырьевые источники бериллия
- 4.3.5. Методы обогащения руд
- 4.3.6. Способы переработки берилловых концентратов
- 4.3.6.1. Сульфатный способ
- 4.3.6.2. Фторидный способ
- 4.3.7. Получение чистого оксида бериллия
- 4.3.8. Получение фторида бериллия
- 4.3.9. Получение хлорида бериллия
- 4.3.10. Производство металлического бериллия
- 4.3.10.1. Магниетермическое восстановление фторида бериллия
- 4.3.10.2. Получение бериллия электролизом
- 4.3.11. Получение компактного бериллия
- 5. Металлургия редкоземельных и радиоактивных металлов
- 5.1. Металлургия редкоземельных металлов
- 5.1.1. Общие сведения о редкоземельных металлах
- 5.1.2. Историческая справка
- 5.1.3. Физические свойства лантаноидов
- 5.1.4. Химические свойства
- 5.1.5. Области применения
- 5.1.6. Источники сырья. Минералы, руды, концентраты
- 5.1.7. Способы переработки монацитовых концентратов
- 5.1.7.1. Сернокислотный способ
- 5.1.7.2. Щелочной способ
- 5.1.8. Методы разделения редкоземельных металлов
- 5.1.8.1. Избирательное окисление
- 5.1.8.2. Избирательное восстановление
- 5.1.8.3. Разделение рзэ экстракцией
- 5.1.8.4. Разделение рзэ методом ионообменной хроматографии
- 5.1.8.5. Общие схемы полного разделения
- 5.1.9. Технология получения редкоземельных металлов
- 5.1.9.1. Получение хлоридов
- 5.1.9.2. Получение фторидов
- 5.1.9.3. Электролитическое получение редкоземельных металлов
- 5.1.9.4. Металлотермические способы получения лантаноидов из галогенидов
- 5.1.9.4.1. Восстановление галогенидов кальцием
- 5.1.9.4.2. Восстановление хлоридов кальцием
- 5.1.9.4.3. Восстановление фторидов кальцием
- 5.1.9.4.4. Литиетермический способ восстановления рзм из хлоридов
- 5.1.9.4.5. Восстановление самария, европия и иттербия из оксидов
- 5.1.10. Очистка редкоземельных металлов дистилляцией
- 5.2. Металлургия скандия
- 5.2.1. Общие сведения
- 5.2.2. Свойства скандия
- 5.2.3. Соединения скандия
- 5.2.4. Области применения скандия
- 5.2.5. Сырьевые источники скандия
- 5.2.6. Переработка скандийсодержащего сырья
- 5.2.6.1. Методы осаждения скандия из растворов
- 5.2.6.2. Переработка тортвейтита
- 5.2.6.3. Переработка уран - ториевых руд
- 5.2.6.4. Переработка титаномагнетитовых концентратов
- 5.2.6.5. Переработка отходов вольфрамового и оловянного производства
- 5.2.6.6. Переработка шлаков ферровольфрамового u oловянного производства
- 5.2.7. Получение металлического скандия
- 5.3. Металлургия тория и урана
- 5.3.1. Общие сведения о металлах
- 5.3.2. Свойства тория и урана
- 5.3.3. Химические соединения тория
- 5.3.4. Химические соединения урана
- 5.3.5. Области применения
- 5.3.6. Сырьевые источники урана
- 5.3.7. Извлечение урана из руд
- 5.3.8. Извлечение урана из растворов
- 5.3.9. Очистка концентратов
- 5.3.10. Получение тетрафторида урана
- 5.3.11. Производство урана
- 5.3.12. Восстановление тетрафторида урана кальцием
- 5.3.13. Восстановление тетрафторида урана магнием
- 5.3.14. Плавка урана
- 5.3.15. Получение чистых соединений тория
- 5.3.16. Производство тория
- 5.3.16.1. Восстановление диоксида тория кальцием
- 5.3.16.2. Восстановление тетрафторида тория кальцием
- 5.3.17. Получение компактного тория