§ 3. Практическое использование законов гидростатики и гидродинамики
Измерительные приборы. Работа ряда измерительных приборов, машин и механизмов основана на законах гидростатики и гидродинамики.
Давление измеряют пьезометрами, жидкостными и механическими манометрами, вакуумметрами. Пьезометр — это открытая сверху стеклянная трубка диаметром 5—10 мм, имеющая измерительную шкалу, по которой отсчитывают высоту столба жидкости. Нижний конец пьезометра опускают в жидкость до уровня точки, в которой измеряют давление. Под действием атмосферного давления жидкость поднимается по трубке на определенную высоту.
Жидкостные манометры отличаются от пьезометров тем, что давление в них измеряют столбом ртути.
Механические манометры бывают пружинные и мембранные. У пружинных манометров стрелка, показывающая давление по шкале, соединена с пружиной, на которую давит среда, а в мембранных — па мембрану. Этими манометрами измеряют высокие давления.
Вакуумметры (жидкостные и механические) служат для измерения вакуума (разрежения), т. е. давления меньше атмосферного. Конструкция и принцип действия вакуумметров аналогичны конструкции и принципу действия манометров.
На использовании закона Паскаля основано устройство гидравлических прессов, гидравлических домкра-
то в, гидроприводов компрессоров высокого давления и других гидравлических машин. Эти машины обычно имеют два сообщающихся между собой цилиндра, диаметр одного из них во много раз больше диаметра другого. Цилиндры заполнены рабочей жидкостью, чаще маслом. В каждом цилиндре расположен поршень. Пусть Sм и Sб — площади поршней соответственно в малом и большом цилиндрах. Если приложить к поршню в малом цилиндре силу FM, то под этим поршнем будет создано давление, равное
p = FM/SM.
В соответствии с законом Паскаля это давление без изменения передается под поршень в большом цилиндре. Тогда сила, действующая на поршень в этом цилиндре, Fб=pSб= SбFм/Sм
Как видим, сила Fб превосходит силу /-">, во столько раз, во сколько площадь Sб больше площади Sм.
Гидравлические сопротивления и число Рейнольдса. Одна из основных задач практической гидравлики — оценка потерь напора на преодоление гидравлических сопротивлений, возникающих при движении реальных жидкостей в различных гидравлических системах. Чтобы правильно определить эти сопротивления, необходимо понять, как может двигаться жидкость.
Существуют два режима движения жидкости: ламинарный и турбулентный. Ламинарный (слоистый) режим характеризуется тем, что струйки жидкости параллельны между собой и стенкам потока, они не перемешиваются по длине потока.
При изменении скорости потока жидкости упорядоченное движение может перейти в неупорядоченное, так называемое турбулентное. При этом струйность потока нарушается, частицы жидкости перемещаются по разным направлениям.
В результате проведения опытов с подкрашенными струйками воды английский физик О. Рейнольде установил, что режим движения зависит от средней скорости жидкости, диаметра трубопровода, динамической вязкости и плотности жидкости и что эти величины связаны между собой соотношением.
Число Рейнольдса Re — безразмерная величина, служащая одной из основных характеристик течения вязкой жидкости и равная отношению сил инерции к силам вязкости:
Re = ρv l /µ,
где р — плотность жидкости: v — характерная скорость (потока); / — характерный линейный размер (например, диаметр трубы); р. — коэффициент вязкости жидкости.
Число Рейнольдса является критерием подобия потоков вязкой жидкости.
При значениях Re меньше 2300 в трубе всегда происходит ламинарное течение жидкости, а при Re больше 2300 — турбулентное. Если Re = 2300, то его называют критическим. На практике почти всегда приходится иметь дело с турбулентным режимом движения жидкости. Потери напора на трение при этом режиме больше, чем при ламинарном.
Потери напора на трение hтр состоят из внутреннего трения частиц и трения жидкости о стенки трубопровода hдл и потерь напора в задвижках, коленах, переходах и других подобных устройствах, называемых местными сопротивлениями hM.
Таким образом, hтр = hдл+hм.
Потери напора на прямолинейном участке трубопровода определяют по формуле hдл= λ(l/d) v2/(2g), где λ—коэффициент сопротивления трения жидкости в трубе, зависящей от режима движения, шероховатости стенок трубы и рода перемещаемой жидкости (обычно λ=0,02÷0,04); l—длина прямого участка трубопровода, м; d — диаметр трубопровода, м; v2/(2g)—скоростной напор жидкости, м.
Потери напора на преодоление местных сопротивлений будут
hM = εv2/(2g), где ε — коэффициент местного сопротивления.
Потерю напора, вызванную местным сопротивлением, можно определить непосредственным измерением разности показаний монометров, поставленных до и после этого сопротивления. На преодоление местных сопротивлений тратится значительная часть общей мощности, потребляемой насосом. Поэтому обычно ограничивают применение фасонных частей на насосных установках и избегают установки труб с резким изменением площади сечения.
- Глава 1
- §1.Свойства жидкостей
- § 2. Сведения из гидростатики и гидродинамики
- § 3. Практическое использование законов гидростатики и гидродинамики
- § 4. Истечение жидкости через отверстия и насадки
- Глава II
- § 5. Параметры состояния газа
- § 6. Идеальный и реальный газы
- § 7. Теплоемкость газов *
- § 8. Первый закон термодинамики
- § 9. Термодинамические процессы
- § 10. Второй закон термодинамики
- § 11. Свойства водяного пара
- §12. Свойства влажного воздуха
- §13. Истечение и дросселирование
- § 14. Основы теплопередачи
- Глава III
- § 15. Основные сборочные единицы трубопроводов
- § 17. Ремонт и испытание трубопроводов и арматуры
- § 18. Правила безопасной эксплуатации трубопроводов и арматуры
- § 19. Составление и чтение схем трубопроводов
- Глава IV
- § 20. Общие сведения
- § 21. Возвратно-поступательные насосы
- § 22. Основные сборочные единицы насоса
- § 24. Процессы всасывания и нагнетания
- § 25. Газовые колпаки
- § 26. Индикаторная диаграмма поршневого насоса
- § 28. Дозировочные и синхродозировочные электронасосные агрегаты
- § 27. Паровые прямодействующие насосы
- § 30. Примеры составления и чтения схем насосных установок
- Глава V
- § 31. Общие сведения
- § 32. Схема установки центробежных насосов
- § 33. Основные параметры центробежного насоса
- § 34. Уравнение Эйлера для определения теоретического и действительного напоров центробежного насоса
- § 35. Характеристики центробежного насоса и трубопровода
- § 36. Совместная работа центробежных насосов
- § 37. Осевая сила и способы ее разгрузки
- § 38. Основные сборочные единицы центробежных насосов
- § 39. Горизонтальные одноколесные
- § 40. Центробежные консольные и погружные химические насосы
- § 41. Центробежные герметичные электронасосы. Насосы из неметаллических материалов
- § 42. Типовые схемы насосных установок
- Глава VI
- § 43. Общие положения по эксплуатации насосов
- § 44. Регулирование работы и смазывание насосов
- § 45. Автоматическое управление насосными установками
- § 46. Эксплуатация поршневых насосов
- § 47. Эксплуатация центробежных насосов
- Глава VII
- § 48. Общие сведения
- § 49. Теоретический и действительный циклы работы одноступенчатого компрессора поршня выполняют диафрагмы (мембраны), называются диафраг-мовыми.
- § 50. Основные параметры поршневых компрессоров
- § 51. Способы регулирования производительности поршневых компрессоров
- § 52. Назначение и устройство основных сборочных единиц поршневых компрессоров
- § 53. Смазочные системы поршневых компрессоров
- § 54. Системы охлаждения поршневых компрессоров
- § 55. Газовые коммуникации
- § 56. Угловые крейцкопфные компрессоры
- § 57. Горизонтальные компрессоры
- § 58. Вертикальные компрессоры
- § 59. Поршневые компрессоры без смазывания цилиндров. Компрессоры без кривошипно-шатунного механизма
- § 60. Роторные и винтовые компрессоры
- Глава VIII
- § 61. Принцип действия и классификация
- § 62. Теоретические основы работы центробежных компрессоров
- § 63. Основные сборочные единицы центробежных компрессоров
- § 64. Смазочная система центробежных компрессоров
- § 65. Вентиляторы
- § 66. Центробежные воздухо- и газодувки
- § 67. Многоступенчатые центробежные компрессоры
- § 68. Центробежные
- § 69. Осевые компрессоры
- § 70. Холодильные компрессоры
- § 71. Вспомогательное оборудование компрессорных установок.
- Глава X
- § 72. Основные правила эксплуатации и технического обслуживания
- § 73. Эксплуатация поршневых компрессоров
- § 74. Автоматическое управление поршневыми компрессорными установками.
- § 75. Возможные неисправности поршневых компрессоров
- § 76. Эксплуатация центробежных компрессоров
- § 77. Автоматическое управление центробежными компрессорными установками
- § 78. Возможные неисправности центробежных компрессоров
- § 79. Безопасные условия эксплуатации компрессорных установок
- Глава XI
- § 80. Электродвигатели
- § 81. Двигатели внутреннего сгорания
- § 82. Паровые машины
- § 83. Паровые и газовые турбины
- § 84. Гидравлический привод
- § 85. Промежуточные звенья привода
- § 86. Газомоторные компрессоры и газотурбинные установки
- Глава XII
- § 87. Назначение и виды ремонтов
- § 88. Способы определения неисправностей. Подготовка оборудования к ремонту
- § 89. Ремонт сальников
- § 90. Ремонт цилиндров, поршней и поршневых колец
- § 91. Ремонт деталей кривошипно-шатунного механизма
- § 92. Ремонт лабиринтных уплотнений и думмисов
- § 93. Ремонт маслонасосов и маслосистем
- § 94. Ремонт и обслуживание вспомогательного оборудования
- § 95. Пуск после ремонта и сдача насосов и компрессоров в эксплуатацию
- § 96. Виды смазки для насосов и компрессоров
- § 97. Прокладочные и набивные материалы
- Глава XIII
- § 98. Технологический регламент и должностные инструкции
- § 99. Бригадная форма организации и стимулирования труда