§ 2. Сведения из гидростатики и гидродинамики
Гидростатика. Важнейшей характеристикой жидкости, находящейся в покое, служит гидростатическое давление, которое жидкость оказывает на стенки сосуда и на тела, погруженные в нее.
Гидростатическое давление обладает двумя свойствами: 1) оно всегда направлено перпендикулярно поверхности, на которую действует, так как в покоящейся жидкости отсутствуют силы внутреннего трения; 2) значение гидростатического давления в данной точке покоящейся жидкости одинаково во всех направлениях.
Для определения гидростатического давления в любой точке жидкости служит основное уравнение гидростатики:
Ρ=ρ0+ρh
где ρ—гидростатическое давление в данной точке, Па; ρ0— внешнее давление на свободную поверхность жидкости, Па; h — глубина точки под свободной поверхностью жидкости, м; ρ — плотность жидкости, кг/м3.
Из основного уравнения гидростатики вытекают еще два свойства жидкостей, определяемые законом Паскаля и архимедовой силой.
Закон Паскаля: внешнее давление ρ0 , приложенное к свободной поверхности жидкости в замкнутом сосуде, передается в любую точку жидкости без изменения.
Архимедова сила: на всякое погруженное в жидкость тело действует выталкивающая сила, направленная вверх и равная вытесненной им жидкости.
Гидродинамика. Изучает поток жидкости, т. е. движение жидкости между ограничивающими поверхностями.
Различают два вида движения жидкости: установившееся и неустановившееся. Установившимся называется такое движение, при
котором скорость жидкости в каждой точке не изменяется во времени. При неустановившемся движении скорость в данной точке потока изменяется с течением времени.
Живым сечением потока называют сечение в пределах потока.
Равномерное установившееся движение жидкости - это такое движение, при котором живые сечения потока одинаковы по всей его длине и скорость потока в соответствующих точках всех живых сечений также одинакова.
При неравномерном установившемся движении средние скорости и живые сечения потока изменяются по его длине. Примером такого движения может служить движение воды в реках или жидкости в трубах с изменяющимся живым сечением.
Различают безнапорные и напорные потоки. Безнапорный (или свободный) поток имеет свободную поверхность, например поток воды в реке или канале. Напорный поток не имеет свободной поверхности и ограничен со всех сторон жесткими стенками, например поток воды в водопроводной трубе.
Расход жидкости — это количество жидкости, протекающее через живое сечение потока в единицу времени. Обычно расход выражается в единицах объема, отнесенных к единице времени (м3/с, м3/ч, л/с), или в единицах массы, отнесенных к единице времени (кг/с). В первом случае расход называют объемным, во втором — массовым.
Скорость движения частиц в потоке неодинакова: ближе к оси потока она больше, ближе к стенкам — меньше, поэтому в расчетах пользуются значением средней скорости потока.
Средней скоростью потока называется та условная скорость, с которой должны были бы двигаться все частицы жидкости, чтобы сохранился ее расход.
Среднюю скорость потока v определяют по формуле v = Q/S, где Q — объемный расход жидкости, м3/с; 5 —площадь живого сечения, м2.
При установившемся движении расходы жидкости во всех сечениях потока одинаковы: Q1=Q2=Q=-const.
Так как Q1 = S1 v 1 , a Q2 = S2v2, то S1 v 1=S2v2 или v1/v2=S2/S1.
При установившемся движении жидкости средние скорости потока обратно пропорциональны площади живых сечений, т. е. чем меньше сечение, тем больше скорость, и наоборот.
Уравнение Бернулли. Одно из основных уравнений гидравлики и технической гидродинамики — уравнение Д. Бернулли, представляющее собой закон сохранения энергии движущейся жидкости. Для струйки идеальной жидкости, т. е. такой жидкости, у которой нет вязкости, а значит, и сил внутреннего трения, при установившемся движении уравнение имеет вид
H=(p/ρ)+z + v2/(2g)=const
где Н — полный гидродинамический напор, м; p/ρ — пьезометрический напор, м; z — геодезическая высота (или геодезический напор), м; v2/(2g)—скоростной, или динамический, напор, м.
Сумма пьезометрического, геодезического и скоростного напоров при установившемся движении элементарной струйки идеальной жидкости остается постоянной во всех сечениях струйки.
При движении реальной жидкости возникают потери части напора на преодоление сил внутреннего трения жидкости, а также трения ее о стенки потока. Поэтому полный напор определяют выражением
H=(p/ρ)+z + v2/(2g)+hтр
Согласно уравнению Д. Бернулли, при установившемся движении жидкости сумма четырех высот (высоты положения z; пьезометрической высоты p/ρ, высоты, соответствующей скоростному напору, v2/(2g), и высоты, соответствующей потерянному напору, hтр) вдоль потока остается постоянной.
Так как статический напор в данном живом сечении Hст= p/ρ + z, то H=HCT+v2/(2g)+hтр, т. е. полный гидродинамический напор состоит из суммы напоров статического и динамического и потери напора на трение.
С помощью уравнения Бернулли выводят расчетные формулы для различных случаев движения жидкости и решают большое количество практических задач, связанных с движением жидкости в трубах и открытых руслах.
- Глава 1
- §1.Свойства жидкостей
- § 2. Сведения из гидростатики и гидродинамики
- § 3. Практическое использование законов гидростатики и гидродинамики
- § 4. Истечение жидкости через отверстия и насадки
- Глава II
- § 5. Параметры состояния газа
- § 6. Идеальный и реальный газы
- § 7. Теплоемкость газов *
- § 8. Первый закон термодинамики
- § 9. Термодинамические процессы
- § 10. Второй закон термодинамики
- § 11. Свойства водяного пара
- §12. Свойства влажного воздуха
- §13. Истечение и дросселирование
- § 14. Основы теплопередачи
- Глава III
- § 15. Основные сборочные единицы трубопроводов
- § 17. Ремонт и испытание трубопроводов и арматуры
- § 18. Правила безопасной эксплуатации трубопроводов и арматуры
- § 19. Составление и чтение схем трубопроводов
- Глава IV
- § 20. Общие сведения
- § 21. Возвратно-поступательные насосы
- § 22. Основные сборочные единицы насоса
- § 24. Процессы всасывания и нагнетания
- § 25. Газовые колпаки
- § 26. Индикаторная диаграмма поршневого насоса
- § 28. Дозировочные и синхродозировочные электронасосные агрегаты
- § 27. Паровые прямодействующие насосы
- § 30. Примеры составления и чтения схем насосных установок
- Глава V
- § 31. Общие сведения
- § 32. Схема установки центробежных насосов
- § 33. Основные параметры центробежного насоса
- § 34. Уравнение Эйлера для определения теоретического и действительного напоров центробежного насоса
- § 35. Характеристики центробежного насоса и трубопровода
- § 36. Совместная работа центробежных насосов
- § 37. Осевая сила и способы ее разгрузки
- § 38. Основные сборочные единицы центробежных насосов
- § 39. Горизонтальные одноколесные
- § 40. Центробежные консольные и погружные химические насосы
- § 41. Центробежные герметичные электронасосы. Насосы из неметаллических материалов
- § 42. Типовые схемы насосных установок
- Глава VI
- § 43. Общие положения по эксплуатации насосов
- § 44. Регулирование работы и смазывание насосов
- § 45. Автоматическое управление насосными установками
- § 46. Эксплуатация поршневых насосов
- § 47. Эксплуатация центробежных насосов
- Глава VII
- § 48. Общие сведения
- § 49. Теоретический и действительный циклы работы одноступенчатого компрессора поршня выполняют диафрагмы (мембраны), называются диафраг-мовыми.
- § 50. Основные параметры поршневых компрессоров
- § 51. Способы регулирования производительности поршневых компрессоров
- § 52. Назначение и устройство основных сборочных единиц поршневых компрессоров
- § 53. Смазочные системы поршневых компрессоров
- § 54. Системы охлаждения поршневых компрессоров
- § 55. Газовые коммуникации
- § 56. Угловые крейцкопфные компрессоры
- § 57. Горизонтальные компрессоры
- § 58. Вертикальные компрессоры
- § 59. Поршневые компрессоры без смазывания цилиндров. Компрессоры без кривошипно-шатунного механизма
- § 60. Роторные и винтовые компрессоры
- Глава VIII
- § 61. Принцип действия и классификация
- § 62. Теоретические основы работы центробежных компрессоров
- § 63. Основные сборочные единицы центробежных компрессоров
- § 64. Смазочная система центробежных компрессоров
- § 65. Вентиляторы
- § 66. Центробежные воздухо- и газодувки
- § 67. Многоступенчатые центробежные компрессоры
- § 68. Центробежные
- § 69. Осевые компрессоры
- § 70. Холодильные компрессоры
- § 71. Вспомогательное оборудование компрессорных установок.
- Глава X
- § 72. Основные правила эксплуатации и технического обслуживания
- § 73. Эксплуатация поршневых компрессоров
- § 74. Автоматическое управление поршневыми компрессорными установками.
- § 75. Возможные неисправности поршневых компрессоров
- § 76. Эксплуатация центробежных компрессоров
- § 77. Автоматическое управление центробежными компрессорными установками
- § 78. Возможные неисправности центробежных компрессоров
- § 79. Безопасные условия эксплуатации компрессорных установок
- Глава XI
- § 80. Электродвигатели
- § 81. Двигатели внутреннего сгорания
- § 82. Паровые машины
- § 83. Паровые и газовые турбины
- § 84. Гидравлический привод
- § 85. Промежуточные звенья привода
- § 86. Газомоторные компрессоры и газотурбинные установки
- Глава XII
- § 87. Назначение и виды ремонтов
- § 88. Способы определения неисправностей. Подготовка оборудования к ремонту
- § 89. Ремонт сальников
- § 90. Ремонт цилиндров, поршней и поршневых колец
- § 91. Ремонт деталей кривошипно-шатунного механизма
- § 92. Ремонт лабиринтных уплотнений и думмисов
- § 93. Ремонт маслонасосов и маслосистем
- § 94. Ремонт и обслуживание вспомогательного оборудования
- § 95. Пуск после ремонта и сдача насосов и компрессоров в эксплуатацию
- § 96. Виды смазки для насосов и компрессоров
- § 97. Прокладочные и набивные материалы
- Глава XIII
- § 98. Технологический регламент и должностные инструкции
- § 99. Бригадная форма организации и стимулирования труда