§ 11. Свойства водяного пара
Водяной пар широко используют в качестве рабочего тела в поршневых паровых машинах и паровых турбинах, а также как теплоноситель в теплообменных аппаратах. Поэтому изучение свойств водяного пара занимает в термодинамике важное место.
Пар получают двумя способами: испарением и кипением.
Испарением называется процесс парообразования, происходящий только с поверхности жидкости. Испарение идет при любой температуре, причем интенсивность его увеличивается с повышением температуры.
Кипение — интенсивный переход жидкости в пар, протекающий во всем объеме. Кипение происходит при строго определенной для каждой жидкости температуре, которая зависит от давления Чем выше давление, тем соответственно выше температура, при которой кипит жидкость. Температура кипения остается постоянной, пока вся жидкость не превратится в пар.
Пар, находящийся в равновесии со своей жидкостью, называется насыщенным. При равновесии устанавливается постоянная плотность пара, которая отвечает определенному давлению. Это давление называют упругостью насыщенного пара. Упругость насыщенного пара возрастает с повышением температуры. Состояние насыщенного пара очень неустойчиво. Малейшее изменение условий, в которых он находится, приводит либо к конденсации пара, либо к дополнительному парообразованию.
Насыщенный пар может быть сухим и влажным. Пар, не содержащий в своем составе частиц жидкости, называют сухим насыщенным паром.
Влажный насыщенный пар представляет собой механическую смесь сухого пара и мельчайших частиц жидкости.
Количество теплоты, необходимое для превращения жидкости в пар при неизменной температуре, называют теплотой парообразования. С увеличением давления теплота парообразования уменьшается.
Если к сухому насыщенному пару подводить теплоту при постоянном давлении, то температура его будет повышаться, объем увеличится и сухой насыщенный пар перейдет в состояние перегретого.
Степень перегрева пара ∆t определяют разностью температур перегретого tП и насыщенного tH паров:
∆t = tП-tH
Чем выше температура перегрева пара, тем ближе он по своим свойствам к идеальному газу.
Водяной пар получают в паровых котлах различных размеров и типов. Так как экономичность тепловых двигателей повышается с увеличением температуры горячего источника, в паросиловых установках всегда используют перегретый пар. В настоящее время в нашей стране освоено изготовление паровых котлов большой производительности с температурой перегретого пара до 585°С. Перегрев пара осуществляется в пароперегревателях, в которые пар поступает из котла во влажном насыщенном состоянии. В пароперегревателях пар сначала подсушивается, т. е. из него полностью удаляется влага, а затем перегревается до заданной температуры. Промышленный технологический пар следует рассматривать как реальный газ, который подчиняется уравнению Ван-дер-Ваальса.
Для каждого вещества существует так называемое критическое состояние, которое характеризуется критическим давлением рк и критической температурой tK. В этом состоянии плотность жидкости и ее насыщенного пара становятся одинаковыми; исчезает различие между жидкостью и ее насыщенным паром. Вещество, находящееся в критическом состоянии, является однофазным. Оно обладает свойствами газообразных и жидких тел одновременно. При температуре выше критической никаким повышением давления перегретый пар не может быть обращен в жидкость.
- Глава 1
- §1.Свойства жидкостей
- § 2. Сведения из гидростатики и гидродинамики
- § 3. Практическое использование законов гидростатики и гидродинамики
- § 4. Истечение жидкости через отверстия и насадки
- Глава II
- § 5. Параметры состояния газа
- § 6. Идеальный и реальный газы
- § 7. Теплоемкость газов *
- § 8. Первый закон термодинамики
- § 9. Термодинамические процессы
- § 10. Второй закон термодинамики
- § 11. Свойства водяного пара
- §12. Свойства влажного воздуха
- §13. Истечение и дросселирование
- § 14. Основы теплопередачи
- Глава III
- § 15. Основные сборочные единицы трубопроводов
- § 17. Ремонт и испытание трубопроводов и арматуры
- § 18. Правила безопасной эксплуатации трубопроводов и арматуры
- § 19. Составление и чтение схем трубопроводов
- Глава IV
- § 20. Общие сведения
- § 21. Возвратно-поступательные насосы
- § 22. Основные сборочные единицы насоса
- § 24. Процессы всасывания и нагнетания
- § 25. Газовые колпаки
- § 26. Индикаторная диаграмма поршневого насоса
- § 28. Дозировочные и синхродозировочные электронасосные агрегаты
- § 27. Паровые прямодействующие насосы
- § 30. Примеры составления и чтения схем насосных установок
- Глава V
- § 31. Общие сведения
- § 32. Схема установки центробежных насосов
- § 33. Основные параметры центробежного насоса
- § 34. Уравнение Эйлера для определения теоретического и действительного напоров центробежного насоса
- § 35. Характеристики центробежного насоса и трубопровода
- § 36. Совместная работа центробежных насосов
- § 37. Осевая сила и способы ее разгрузки
- § 38. Основные сборочные единицы центробежных насосов
- § 39. Горизонтальные одноколесные
- § 40. Центробежные консольные и погружные химические насосы
- § 41. Центробежные герметичные электронасосы. Насосы из неметаллических материалов
- § 42. Типовые схемы насосных установок
- Глава VI
- § 43. Общие положения по эксплуатации насосов
- § 44. Регулирование работы и смазывание насосов
- § 45. Автоматическое управление насосными установками
- § 46. Эксплуатация поршневых насосов
- § 47. Эксплуатация центробежных насосов
- Глава VII
- § 48. Общие сведения
- § 49. Теоретический и действительный циклы работы одноступенчатого компрессора поршня выполняют диафрагмы (мембраны), называются диафраг-мовыми.
- § 50. Основные параметры поршневых компрессоров
- § 51. Способы регулирования производительности поршневых компрессоров
- § 52. Назначение и устройство основных сборочных единиц поршневых компрессоров
- § 53. Смазочные системы поршневых компрессоров
- § 54. Системы охлаждения поршневых компрессоров
- § 55. Газовые коммуникации
- § 56. Угловые крейцкопфные компрессоры
- § 57. Горизонтальные компрессоры
- § 58. Вертикальные компрессоры
- § 59. Поршневые компрессоры без смазывания цилиндров. Компрессоры без кривошипно-шатунного механизма
- § 60. Роторные и винтовые компрессоры
- Глава VIII
- § 61. Принцип действия и классификация
- § 62. Теоретические основы работы центробежных компрессоров
- § 63. Основные сборочные единицы центробежных компрессоров
- § 64. Смазочная система центробежных компрессоров
- § 65. Вентиляторы
- § 66. Центробежные воздухо- и газодувки
- § 67. Многоступенчатые центробежные компрессоры
- § 68. Центробежные
- § 69. Осевые компрессоры
- § 70. Холодильные компрессоры
- § 71. Вспомогательное оборудование компрессорных установок.
- Глава X
- § 72. Основные правила эксплуатации и технического обслуживания
- § 73. Эксплуатация поршневых компрессоров
- § 74. Автоматическое управление поршневыми компрессорными установками.
- § 75. Возможные неисправности поршневых компрессоров
- § 76. Эксплуатация центробежных компрессоров
- § 77. Автоматическое управление центробежными компрессорными установками
- § 78. Возможные неисправности центробежных компрессоров
- § 79. Безопасные условия эксплуатации компрессорных установок
- Глава XI
- § 80. Электродвигатели
- § 81. Двигатели внутреннего сгорания
- § 82. Паровые машины
- § 83. Паровые и газовые турбины
- § 84. Гидравлический привод
- § 85. Промежуточные звенья привода
- § 86. Газомоторные компрессоры и газотурбинные установки
- Глава XII
- § 87. Назначение и виды ремонтов
- § 88. Способы определения неисправностей. Подготовка оборудования к ремонту
- § 89. Ремонт сальников
- § 90. Ремонт цилиндров, поршней и поршневых колец
- § 91. Ремонт деталей кривошипно-шатунного механизма
- § 92. Ремонт лабиринтных уплотнений и думмисов
- § 93. Ремонт маслонасосов и маслосистем
- § 94. Ремонт и обслуживание вспомогательного оборудования
- § 95. Пуск после ремонта и сдача насосов и компрессоров в эксплуатацию
- § 96. Виды смазки для насосов и компрессоров
- § 97. Прокладочные и набивные материалы
- Глава XIII
- § 98. Технологический регламент и должностные инструкции
- § 99. Бригадная форма организации и стимулирования труда