§1.Свойства жидкостей
Свойства жидкого состояния вещества ближе к свойствам твердого состояния, чем к свойствам газообразного. Однако чем выше становится температура жидкости, тем больше ее свойства приближаются к свойствам плотных газов. Молекулы вещества в жидком состоянии расположены вплотную друг к другу, как и в твердом состоянии. Объем жидкости практически не зависит от давления. Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором находится.
Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости.
Плотностью жидкости называют массу вещества, заключенную в единице ее объема, и определяют по формуле
p= m/V,
где ρ—плотность, кг/м3; кг—масса, кг; V—объем, м3.
С увеличением температуры жидкости ее плотность уменьшается, так как увеличивается объем. Исключением является вода, которая имеет наибольшую плотность при температуре 4°С. Плотность жидкости определяют различными способами. В производственных условиях плотность обычно измеряют специальным прибором—ареометром.
Тепловое расширение жидкостей — увеличение объема жидкости при нагревании (исключение составляет вода) характеризуется коэффициентом объемного расширения, который показывает относительное увеличение объема жидкости при повышении ее температуры на 1°С: β =∆ V/(V0t), где ∆V—изменение объема жидкости в процессе повышения температуры; V0—объем жидкости при 0°С.
Единицей коэффициента объемного расширения служит °С-1.
Вода при нагревании от 0° до 4°С сжимается, а при охлаждении от 4° до 0°С расширяется.
Давлением насыщенного пара жидкости или упругостью паров называют давление, при котором устанавливается динамическое равновесие между процессами испарения и конденсации вещества, и число молекул, переходящих из жидкости в пар, равно числу молекул, совершающих обратный переход. Давление насыщенного пара различных жидкостей в значительной степени зависит от температуры и, как правило, увеличивается с ее повышением.
Вязкость характеризует свойство жидкости оказывать сопротивление относительному сдвигу ее частиц, возникающих под действием сил внутреннего трения. Чем больше вязкость жидкости, тем больше силы внутреннего трения, возникающего в ней при перемещении одних слоев относительно других. Вязкость оказывает существенное влияние на характер течения жидкости по трубам и условия ее перекачки насосами.
Для количественной оценки вязкости служит динамический коэффициент вязкости р. Единица динамической вязкости— 1 Н·с/м2, или 1 Па·с.
В гидравлике вязкость жидкости чаще характеризуется кинематическим коэффициентом вязкости v, который равен отношению динамического коэффициента вязкости жидкости к ее плотности: v=µ/ρ. Единица кинематической вязкости - м2/с. В физической системе единиц кинематическую вязкость выражают в стоксах (Ст). Сотая часть стокса называется сантистоксом (сСт).
Практическое значение имеет относительная вязкость жидкости, выраженная в градусах Знглера. Градус Энглера (°Е) есть отношение времени истечения определенного объема жидкости ко времени истечения через то же отверстие такого же объема жидкости. По стандарту единицей относительной вязкости называется градус условной вязкости (°βУ), численно равный градусу Энглера. Как правило, при повышении температуры вязкость жидкости уменьшается.
- Глава 1
- §1.Свойства жидкостей
- § 2. Сведения из гидростатики и гидродинамики
- § 3. Практическое использование законов гидростатики и гидродинамики
- § 4. Истечение жидкости через отверстия и насадки
- Глава II
- § 5. Параметры состояния газа
- § 6. Идеальный и реальный газы
- § 7. Теплоемкость газов *
- § 8. Первый закон термодинамики
- § 9. Термодинамические процессы
- § 10. Второй закон термодинамики
- § 11. Свойства водяного пара
- §12. Свойства влажного воздуха
- §13. Истечение и дросселирование
- § 14. Основы теплопередачи
- Глава III
- § 15. Основные сборочные единицы трубопроводов
- § 17. Ремонт и испытание трубопроводов и арматуры
- § 18. Правила безопасной эксплуатации трубопроводов и арматуры
- § 19. Составление и чтение схем трубопроводов
- Глава IV
- § 20. Общие сведения
- § 21. Возвратно-поступательные насосы
- § 22. Основные сборочные единицы насоса
- § 24. Процессы всасывания и нагнетания
- § 25. Газовые колпаки
- § 26. Индикаторная диаграмма поршневого насоса
- § 28. Дозировочные и синхродозировочные электронасосные агрегаты
- § 27. Паровые прямодействующие насосы
- § 30. Примеры составления и чтения схем насосных установок
- Глава V
- § 31. Общие сведения
- § 32. Схема установки центробежных насосов
- § 33. Основные параметры центробежного насоса
- § 34. Уравнение Эйлера для определения теоретического и действительного напоров центробежного насоса
- § 35. Характеристики центробежного насоса и трубопровода
- § 36. Совместная работа центробежных насосов
- § 37. Осевая сила и способы ее разгрузки
- § 38. Основные сборочные единицы центробежных насосов
- § 39. Горизонтальные одноколесные
- § 40. Центробежные консольные и погружные химические насосы
- § 41. Центробежные герметичные электронасосы. Насосы из неметаллических материалов
- § 42. Типовые схемы насосных установок
- Глава VI
- § 43. Общие положения по эксплуатации насосов
- § 44. Регулирование работы и смазывание насосов
- § 45. Автоматическое управление насосными установками
- § 46. Эксплуатация поршневых насосов
- § 47. Эксплуатация центробежных насосов
- Глава VII
- § 48. Общие сведения
- § 49. Теоретический и действительный циклы работы одноступенчатого компрессора поршня выполняют диафрагмы (мембраны), называются диафраг-мовыми.
- § 50. Основные параметры поршневых компрессоров
- § 51. Способы регулирования производительности поршневых компрессоров
- § 52. Назначение и устройство основных сборочных единиц поршневых компрессоров
- § 53. Смазочные системы поршневых компрессоров
- § 54. Системы охлаждения поршневых компрессоров
- § 55. Газовые коммуникации
- § 56. Угловые крейцкопфные компрессоры
- § 57. Горизонтальные компрессоры
- § 58. Вертикальные компрессоры
- § 59. Поршневые компрессоры без смазывания цилиндров. Компрессоры без кривошипно-шатунного механизма
- § 60. Роторные и винтовые компрессоры
- Глава VIII
- § 61. Принцип действия и классификация
- § 62. Теоретические основы работы центробежных компрессоров
- § 63. Основные сборочные единицы центробежных компрессоров
- § 64. Смазочная система центробежных компрессоров
- § 65. Вентиляторы
- § 66. Центробежные воздухо- и газодувки
- § 67. Многоступенчатые центробежные компрессоры
- § 68. Центробежные
- § 69. Осевые компрессоры
- § 70. Холодильные компрессоры
- § 71. Вспомогательное оборудование компрессорных установок.
- Глава X
- § 72. Основные правила эксплуатации и технического обслуживания
- § 73. Эксплуатация поршневых компрессоров
- § 74. Автоматическое управление поршневыми компрессорными установками.
- § 75. Возможные неисправности поршневых компрессоров
- § 76. Эксплуатация центробежных компрессоров
- § 77. Автоматическое управление центробежными компрессорными установками
- § 78. Возможные неисправности центробежных компрессоров
- § 79. Безопасные условия эксплуатации компрессорных установок
- Глава XI
- § 80. Электродвигатели
- § 81. Двигатели внутреннего сгорания
- § 82. Паровые машины
- § 83. Паровые и газовые турбины
- § 84. Гидравлический привод
- § 85. Промежуточные звенья привода
- § 86. Газомоторные компрессоры и газотурбинные установки
- Глава XII
- § 87. Назначение и виды ремонтов
- § 88. Способы определения неисправностей. Подготовка оборудования к ремонту
- § 89. Ремонт сальников
- § 90. Ремонт цилиндров, поршней и поршневых колец
- § 91. Ремонт деталей кривошипно-шатунного механизма
- § 92. Ремонт лабиринтных уплотнений и думмисов
- § 93. Ремонт маслонасосов и маслосистем
- § 94. Ремонт и обслуживание вспомогательного оборудования
- § 95. Пуск после ремонта и сдача насосов и компрессоров в эксплуатацию
- § 96. Виды смазки для насосов и компрессоров
- § 97. Прокладочные и набивные материалы
- Глава XIII
- § 98. Технологический регламент и должностные инструкции
- § 99. Бригадная форма организации и стимулирования труда