9.1 Виды резервирования
Резервирование – это применение дополнительных средств или возможности с целью сохранения работоспособного состояния устройства (или системы) при отказе одного или нескольких его элементов: Под элементом здесь, как и ранее, следует понимать первичный элемент, функциональный узел, блок и т.д. Резервирование сегодня – дно из основных средств обеспечения заданного уровня надежности (особенно безотказности) аппаратуры при недостаточно надежных ее элементах. К дополнительным средствам и возможностям, используемым при резервировании, относятся прежде всего элементы, вносимые в структуру (схему) устройства в качестве резервных.
При использовании резервирования различают основной и резервный элементы (узлы, блоки) структуры устройства (или системы). Резервный элемент устройства предназначен для выполнения функций основного элемента в случае отказа последнего, называемого резервируемым. Для одного резервируемого элемента может предусматриваться несколько резервных, и, наоборот, один резервный элемент может предусматриваться для нескольких основных (резервируемых). Кроме резервных элементов, в качестве резерва может использоваться запас времени на решение постатейной задачи, избыток обрабатываемой информации, дополнительные функциональные возможности, предусматриваемые в системе, и т.д. Соответственно, в зависимости от вида резерва различают структурное, временное, информационное и функциональное резервирование. Таким образом, резерв может представлять собой не только элементы материальной структуры объекта. Рассмотрим кратко основные виды резервирования.
Структурное резервирование.Этот вид резервирования является материальным и предполагает введение резервных элементов (узлов, блоков) в структуру устройств (систем). При этом различают общее и раздельное резервирование. При общем резервировании резервируемым элементом является все устройство (или система) в целом: передатчик, бортовой вычислитель и т.д. Раздельное резервирование предполагает использование отдельных резервных элементов в устройстве (или системе). Например, для устройства это может быть резерв на уровне микросхем, для системы – на уровне блоков. Раздельное резервирование обычно является встроенным в устройство.
При замене основного элемента резервным необходимо придерживаться определенной стратегии. Если при этом не происходит перестройка структуры устройства (системы), то резервирование называется постоянным. В простейшем случае оно представляет собой параллельное соединение элементов без переключающих устройств (рис. 9.1, а– общее резервирование,б- раздельное).
При наличии переключающих устройств, реагирующих на отказы элементов, имеет место динамическое резервирование. При этом происходит замещение отказавшего элемента резервным (рис. 9.1, в). Динамическое резервирование может быть и более сложным, когда отказ одного элемента приводит не к его замещению таким же элементом, а к изменению структуры устройства (системы). Например, изменяется схема прохождения информации при отказе линии коммуникации.
Распространенным видом резервирования замещением является скользящее резервирование, которое иногда называют резервированием «с дробной кратностью». Суть его состоит в том, что для группы одинаковых основных элементов изделия предусматривается один или несколько таких же резервных элементов, замещающих основные в группе по мере возникновения их отказов. На рис. 9.1, г показаны элементы у11 и У13 – основные (резервируемые), элемент У2 (1, 3) – «скользящий» резервный, замещающий либо элемент У11, либо У19.
Рис. 9.1 Виды структурного резервирования
Отношение числа резервных элементов к числу резервируемых или основных, выраженное несокращенной дробью, называется кратностью резервирования. В частном случае при кратности, равной единице, резервирование называют дублированием.
С точки зрения энергопотребления резервные элементы могут находиться в трех состояниях: 1) состояние нагруженного резерва, когда резервные элементы находятся в режиме основного элемента; 2) облегченный резерв, когда резервные элементы менее нагружены по сравнению с основными элементами; например, в резервном передатчике может быть подано напряжение; 3) ненагруженный резерв, когда резервные элементы находятся полностью в нагруженном режиме до начала выполнения ими функций основного элемента. С точки зрения надежности элементы нагруженного резерва имеют тот же уровень безотказности, долговечности и сохраняемости, что и резервируемые ими основные элементы, так как условия их эксплуатации одинаковы. Элементы облегченного резерва обладают боле высоким уровнем безотказности, а для элементов ненагруженного резерва условно полагают, что они никогда не отказывают и при замещении отказавших основных элементов всегда работоспособны.
Ремонт или замена отказавших резервных элементов позволяет поддерживать очень высокий уровень надежности системы при ее функционировании. Резерв, невосстанавливаемый в процессе функционирования системы, может относиться к восстанавливаемому во время перерывов функционирования или во время хранения. Восстанавливаемость резерва, как и системы в целом, обеспечивается при наличии работоспособности. При резервировании это особенноважно, так как надо своевременно обнаруживать скрытые отказы основных и резервных элементов.
Временное резервирование. При данном резервировании резервы времени могут создаваться за счет повышения скорости обработки информации, за счет специально выделяемого временного резерва. Для этой цели в проектируемой системе, например, может быть использован вычислитель с производительностью, в два раза превышающей заданную. Тогда для повышения надежности решения поставленных задач он их может решать дважды за отведенное время, сопоставляя результаты решения. Или при передаче сообщения по каналу связи может быть выделено дополнительное время для повторения сообщения, чтобы повысить надежность его правильного приема. В резервное время можно исправлять поломки.
Информационное резервирование. Применяется в системах, в которых возникновение отказа приводит к потере или искажению части обрабатываемой или передаваемой информации. Избыток данных позволяет компенсировать эти потери или устранить возникающие искажения. Для информационных систем такой вид резервирования очень важен, но не всегда эффективно используется. В качестве примера информационного резервирования может служить добавление избыточных символов в двоичные кодовые посылки в цифровых системах для повышения их помехозащищенности. Можно передать по каналу связи одни и те же данные дважды, вне зависимости от качества их приема после первой передачи. В этом существенное отличие информационного резервирования от временного. При временном резервировании второй раз данные не следует передавать, если они правильно приняты при первой передаче.
Функциональное резервирование. Этот вид резервирования характерен для электронных систем и устройств многофункционального назначения (измеряющих различные координаты различными методами, обрабатывающих измерения, передающих и отражающих сообщения и т.д.). ЭУ, образующие такую систему, так же могут быть многофункциональными. Если такое ЭУ отказало и не обеспечивает решение какой-то задачи, то оно может быть еще полезным для решения других задач и, таким образом, является функциональным резервом. Функции же отказавшего ЭУ может принять на себя другое ЭУ в дополнение к своим основным функциям.
Например, для обработки измерительных данных в системе имеется несколько различных процессоров, каждый из которых решает только определенный круг задач. Если отказывает какой-то из процессоров, то его задачи начинает решать один (или несколько) из оставшихся исправных. При этом если нет возможности решать все задачи, то решаются только наиболее важные в данный момент (задачи высшего приоритета).
- Министерство образования и науки
- Введение
- Часть 1. Основы теории надежности организационно-технических систем и входящих в их состав объектов
- Раздел 1. Описание свойств организационно-технических систем и входящих в их состав объектов
- 1.1 Системный подход к исследованию надежности сложных технических комплексов
- 1.2Техническое состояние объектов в составе организационно-технических систем
- 1.3. Основные термины и определения в области надежности технических объектов.
- 1.4. Организационно-техническая система и ее свойства
- 1.5. Учет человеческого фактора в организационно-технических системах
- 1.6. Качество организационно-технических систем
- 1.7. Краткая характеристика жизненного цикла сложных технических объектов в составе организационно – технических систем
- Раздел 2. Модели отказов технических объектов
- 2.1. Модель отказов при мгновенных повреждениях.
- 2.2. Модель отказов, обусловленных накапливающимися повреждениями.
- 2.3 Модель “Нагрузка – сопротивляемость объекта”.
- 2.4 Модели параметрических отказов.
- 2.4.1. Модель параметрического отказа при одном параметре, характеризующем работоспособность объекта.
- 2.4.2.Модель параметрической надежности объекта при нескольких параметрах, характеризующих работоспособность его систем и элементов.
- 2.5. Физические основы процессов разрушения твердых тел
- Раздел 3. Показатели надежности организационно-технических систем и их элементов
- 3.1. Особенности показателей надежности организационно-технических систем и их элементов
- 3.2. Показатели безотказности невосстанавливаемых объектов
- 3.3. Показатели безотказности объектов с мгновенным восстановлением.
- 3.4. Комплексные показатели надежности организационно-технических систем
- 3.4.1. Функция готовности объектов с конечным временем восстановления
- 3.4.2 Показатель нахождения объекта в дежурном режиме
- 3.4.3 Показатель (коэффициент) готовности объектов, неконтролируемых в промежутках между проведением технических обслуживаний
- 3.4.4 Выбор оптимального значения периодичности технического обслуживания
- 3.4.5. Комплексные показатели готовности организационно технических систем
- 3.5. Особенности оценки надежности программного обеспечения
- Раздел 4. Показатели долговечности
- 4.1 Основные формулы и определения
- 4.2 Основные показатели долговечности.
- 4.3 Задание требований к гамма-процентному сроку службы
- 4.4 Задание гамма-процентных ресурсов.
- Относительно r1, r2, при заданных значениях , b1, b2, c1, c2, t.
- 4.5 Экспертно-факторный подход к оценке и прогнозированию долговечности организационно-технических систем и их элементов.
- Метод определения оптимальных сроков службы отс с учетом характера их применения
- 4.7 Оценка сроков службы объектов с учетом физического и морального износа
- Раздел 5. Ремонтопригодность
- 5.1 Показатели ремонтопригодности
- 5.2Организацияпоиска и устранения дефектов, неисправностей и отказов
- 6. Сохраняемость
- 6.1 Анализ факторов, влияющих на сохраняемость объектов
- 6.2 Консервация объектов
- 6.3 Периодичность проверок объектов при хранении
- 6.4 Контроль и поддержание температурно-влажностного режима в хранилищах
- 6.5. Особенности хранения крупногабаритных элементов комплексов летательных аппаратов.
- 6.6. Предотвращение смятия баков ракет-носителей внешним избыточным давлением.
- 6.7. Особенности сохраняемости крупногабаритных элементов ракетно-космической техники при перевозках железнодорожным транспортом.
- 6.8 Определение показателей безотказности объектов в переменном режиме. Физический принцип надежности н.М. Седякина.
- Раздел 7. Определение показателей надежности элементов организационно-технических систем на основе методов теории стохастической индикации.
- 7.1 Основы теории стохастической индикации
- 7.2 Физическая природа стохастических индикаторов.
- 7.3 Методы определения показателей надежности на основе методов стохастической индикации.
- 7.4 Графический метод построения функций распределения ,стохастических индикаторов.
- 7.5. Построение функций распределения и стохастических индикаторов.
- Часть 2. Пути и методы повышения надежности организационно-технических систем и их элементов
- Раздел 8. Техническое обслуживание объектов
- 8.1 Назначение и содержание технического обслуживания.
- 8.2 Системы то и принципы их выбора.
- Раздел 9. Надежность систем и объектов с резервированием
- 9.1 Виды резервирования
- 9.2. Показатели надежности устройств с постоянным нагруженным резервом
- Раздел 10. Расчет надежности организационно-технических систем и их элементов……….……….……….……….……….…………………... 9
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем 246
- 9.3. Показатели надежности при резервировании с ненагруженным резервом
- 9.4. Сопоставление общего и раздельного резервирования
- 9.5. Скользящее резервирование
- 9.6. Резервирование с применением мажоритарного элемента
- 9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
- 9.8. Метод свертки
- 9.9. Логико-вероятностный метод
- 9.10. Оценка надёжности мостиковых структур методом перебора.
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем
- 10.1. Расчет надежности ремонтируемых организационно-технических систем
- Вычисление функций готовности и простоя нерезервированных систем
- 10.2 Особенности расчёта надёжности резервированных восстанавливаемых систем.
- 10.3. Примеры расчётов надёжности восстанавливаемых систем.
- 10.4 Определение надежности с учетом восстанавливаемости и числа запасных элементов
- Раздел 11. Определение необходимого числа запасных элементов
- 11.1. Оптимальное соотношение между надежностью и стоимостью
- 11.2. Определение гарантированного числа запасных элементов
- 11.3. Оптимальное резервирование
- 11.4. Алгоритмы оптимального резервирования
- 11.5. Применение резервирования в системах наведения и управления летательных аппаратов
- Раздел 12. Испытания организационно-технических систем и их элементов
- 12.1. Планы испытаний
- 12.2 Оценка показателей надежности по результатам испытаний.
- 12.2.1 Испытания на надежность элементов объектов в составе организационно-технических систем
- 12.2.2.Общие методы оценки показателей надёжности по результатам испытаний
- Эмпирическая функция распределения и гистограмма результатов испытаний
- Метод проверки гипотез о законах распределения.
- Графические методы.
- Метод максимального правдоподобия.
- Метод квантилей.
- 12.2.3 Интервальные оценки показателей надёжности.
- Определение доверительного интервала для средней наработки на отказ
- 12.2.4 Контрольные испытания.
- Контроль по методу однократной выборки.
- 12.3 Обеспечение надежности объектов ркт в процессе опытной отработки.
- 12.3.1. Логико-вероятностная модель процесса отработки.
- 12.3.2 Определение числа доработок для обеспечения требуемого значения показателя надежности.
- 12.4 Оптимизация программы испытаний сложных объектов по стоимости
- 12.5 Краткая характеристика жизненного цикла сложных технических объектов.
- 12.6.Изменение надёжности летательного аппарата при его отработке в составе организационно-технической системы
- Раздел 13. Общие вопросы технической диагностики
- 13.1 Основные понятия и определения
- 13.2Поиск и устранение неисправностей (отказов)
- 13.3. Методы поиска неисправностей (отказов) и обуславливающих их дефектов.
- 13.3.1 Условия работоспособности объектов. Контроль работоспособности.
- 13.3.2. Методы обнаружения дефектов
- 13.4 Критерии оптимальности процесса поиска неисправностей
- Алгоритм поиска дефектов
- 13.5. Методы построения алгоритмов поиска дефектов
- 13.6 Поиск неисправных элементов методом групповых проверок
- 13.7. Поиск отказавших элементов на основе чисел Фибаначи и золотой пропорции.
- Раздел 14. Обеспечение надежности систем «человек-машина» в организационно-технических системах
- 14.1 Виды совместимости среды и системы «человек-машина»
- 14.2 Методология исследования систем «человек – машина»
- 14.3 Организация рабочих мест
- 14.4 Выбор положения работающего
- 14.5 Пространственная компоновка рабочего места
- 14.6 Размерные характеристики рабочего места (боевого поста)
- 14.7 Взаимное расположение рабочих мест
- 14.8 Размещение технологической и организационной оснастки
- 14.9 Обзор и наблюдение за технологическим процессом
- Раздел 15. Управление надежностью
- Раздел 16. Информационное обеспечение программ обеспечения надежности
- Заключение
- Библиографический список.