9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
При резервировании в этом случае вероятность безотказной работы элемента" р необходимо рассматривать как содержащую две составляющие р1 и р2, соотношение между которыми зависит от типа элементов. Например, отказ диода может вызвать обрыв или короткое замыкание в блоке. Структурная схема надежности блока с учетом обрыва и короткого замыкания представлена на рис. 9.9.
Рис. 9.9. Структурная схема надежности блока
Если вероятность безотказной работы относительно обрыва p2 а вероятность безотказной работы относительно короткого замыкания — р2, то тогда вероятность безотказной работы диода p=p1p2.
Пусть блок дублируется. Для наглядности блок будем представлять в виде диода (рис. 9.11). Тогда вероятность повреждения в связи с обрывом уменьшается, так как повреждение возникает при обрыве в обоих диодах, а при коротком замыкании возрастает, так как достаточно, чтобы произошло короткое замыкание хотя бы одного из диодов. В этом случае структурная схема надежности имеет вид, представленный на рис. 9.12. Если блоки соединены последовательно (рис. 9.13), то получается схема надежности, изображенная на рис. 9.14, с параметрами которой можно оперировать, как с элементами. Вероятность безотказной работы схемы, данной на рис. 9.11, имеет вид
, (9.33)
а вероятность безотказной работы схемы, представленной
на рис. 9.14, будет
. (9.34)
Рассмотренные примеры позволяют сделать выводы: 1. Параллельное и последовательное соединение элементов в принципиальных схемах не всегда соответствуют параллельному и последовательному соединению в схемах по надежности. 2. Надежность работы
Рис. 9.10. Дублированный блок
Рис. 9.11. Структурная схема надежности дублированного блока
элементов зависит от ряда параметров. При расчете нужно различать параметры типа «О» (обрыв), надежность которых повышается посредством
параллельного включения аналогичных элементов, и параметры типа «КЗ» (короткое замыкание), надежность которых повышается при последовательном соединении элементов.
Рис. 9.12. Последовательное соединение
Рис. 9.13. Структурная схема надежности последовательного соединения
Следует рассмотреть выигрыш надежности при s-кратном резервировании. Структурная схема надежности элемента при кратности резервирования s—1 показана на рис. 9.14. В этом случае вероятность безотказной работы
Рис.9.14. Структурная схема надежности группы с кратностью резервирования
Отсюда видно, что если второй сомножитель с ростом sстремится к единице, то первый убывает, поэтому максимальная надежность обеспечивается при некотором определенном р, величина которого зависит от, соотношенияpiи р2. Исследование этого уравнения показывает, что максимум функциир(х)достигается при
Действительно
.
Притом, что
.
Тогда
.
;
;
Следовательно
.
В качестве sнеобходимо брать ближайшее к х целое число, дающее большее значение для р.Еслиp1=p2,тор=р1s[1—(1—Pi)s].
Так как р12>р1s[1—(1—Pi)s],то приs> 2 повысить надежность не удается. Если соединить элементы одним из двух способов, представленных на рис.9.16 а,б,то структурные схемы их параметров надежности будут иметьВИД,изображенный на рис.9.15, в,г.Из схем видно, что последовательно-параллельное соединение соответствует блочному резервированию другого параметра. На рис. 9.15 в структурная схема покороткому замыканиюсоответствует раздельному резервированию, поэтому на рис. 9.15, в, гследует
Рис. 9.15. Последовательно-параллельное резервирование (а) и структурная схема надежности для параллельно-последовательного резервирования (б)
читать 01—02; О3—04; К<31—К33;К32—КЗ9.В обоих случаях вероятность безотказной работы
Если имеется sэлементов в цепочке иjцепочек, то
Вероятность безотказной работы параметров типа «О» и «КЗ» соответственно равна и.
Если известно, какая доля от общего числа отказов вызвана отказом типа «КЗ» и «О», то 𝜆1 =Ьи𝜆2=(1—b)𝜆,где Ь—доля отказов по причине короткого замыкания Следовательно,𝜆=𝜆1+𝜆2.
Зависимость вероятности безотказной работы элементов от способов резервирования дана в табл. 9.1. В ней элементы разделены на три группы: I группа элементов выходит из строя из-за отказов типа «О» и «КЗ»; II — из-за отказов типа «О»; III —из-за отказов типа «КЗ».
Таблица 9.1.
Способ резервирования | Группы элементов | ||
I | II | III | |
Без резервирования | p1p2 | p1 | p2 |
Последовательный |
|
|
|
Параллельный |
|
| |
Последовательно- параллельный Параллельно-последовательный |
|
|
|
При определении надежности схем, приведенных на рис. 9.9 и 9.12, предполагалось, что появление короткого замыкания (или обрыва) не зависит от того, работоспособен или нет рассматриваемый элемент. В действительности характер зависимости надежности более сложный. Например, для схемы, показанной на рис. 9.12, которая реализуется по отказу типа «КЗ», целесообразно различить обрыв у работоспособного элемента и элемента, который замкнут накоротко. Для схемы, представленной на рис, 9.9, необходимо различить вероятность появления короткого замыкания у работоспособного элемента и элемента, который уже отказал из-за обрыва.
- Министерство образования и науки
- Введение
- Часть 1. Основы теории надежности организационно-технических систем и входящих в их состав объектов
- Раздел 1. Описание свойств организационно-технических систем и входящих в их состав объектов
- 1.1 Системный подход к исследованию надежности сложных технических комплексов
- 1.2Техническое состояние объектов в составе организационно-технических систем
- 1.3. Основные термины и определения в области надежности технических объектов.
- 1.4. Организационно-техническая система и ее свойства
- 1.5. Учет человеческого фактора в организационно-технических системах
- 1.6. Качество организационно-технических систем
- 1.7. Краткая характеристика жизненного цикла сложных технических объектов в составе организационно – технических систем
- Раздел 2. Модели отказов технических объектов
- 2.1. Модель отказов при мгновенных повреждениях.
- 2.2. Модель отказов, обусловленных накапливающимися повреждениями.
- 2.3 Модель “Нагрузка – сопротивляемость объекта”.
- 2.4 Модели параметрических отказов.
- 2.4.1. Модель параметрического отказа при одном параметре, характеризующем работоспособность объекта.
- 2.4.2.Модель параметрической надежности объекта при нескольких параметрах, характеризующих работоспособность его систем и элементов.
- 2.5. Физические основы процессов разрушения твердых тел
- Раздел 3. Показатели надежности организационно-технических систем и их элементов
- 3.1. Особенности показателей надежности организационно-технических систем и их элементов
- 3.2. Показатели безотказности невосстанавливаемых объектов
- 3.3. Показатели безотказности объектов с мгновенным восстановлением.
- 3.4. Комплексные показатели надежности организационно-технических систем
- 3.4.1. Функция готовности объектов с конечным временем восстановления
- 3.4.2 Показатель нахождения объекта в дежурном режиме
- 3.4.3 Показатель (коэффициент) готовности объектов, неконтролируемых в промежутках между проведением технических обслуживаний
- 3.4.4 Выбор оптимального значения периодичности технического обслуживания
- 3.4.5. Комплексные показатели готовности организационно технических систем
- 3.5. Особенности оценки надежности программного обеспечения
- Раздел 4. Показатели долговечности
- 4.1 Основные формулы и определения
- 4.2 Основные показатели долговечности.
- 4.3 Задание требований к гамма-процентному сроку службы
- 4.4 Задание гамма-процентных ресурсов.
- Относительно r1, r2, при заданных значениях , b1, b2, c1, c2, t.
- 4.5 Экспертно-факторный подход к оценке и прогнозированию долговечности организационно-технических систем и их элементов.
- Метод определения оптимальных сроков службы отс с учетом характера их применения
- 4.7 Оценка сроков службы объектов с учетом физического и морального износа
- Раздел 5. Ремонтопригодность
- 5.1 Показатели ремонтопригодности
- 5.2Организацияпоиска и устранения дефектов, неисправностей и отказов
- 6. Сохраняемость
- 6.1 Анализ факторов, влияющих на сохраняемость объектов
- 6.2 Консервация объектов
- 6.3 Периодичность проверок объектов при хранении
- 6.4 Контроль и поддержание температурно-влажностного режима в хранилищах
- 6.5. Особенности хранения крупногабаритных элементов комплексов летательных аппаратов.
- 6.6. Предотвращение смятия баков ракет-носителей внешним избыточным давлением.
- 6.7. Особенности сохраняемости крупногабаритных элементов ракетно-космической техники при перевозках железнодорожным транспортом.
- 6.8 Определение показателей безотказности объектов в переменном режиме. Физический принцип надежности н.М. Седякина.
- Раздел 7. Определение показателей надежности элементов организационно-технических систем на основе методов теории стохастической индикации.
- 7.1 Основы теории стохастической индикации
- 7.2 Физическая природа стохастических индикаторов.
- 7.3 Методы определения показателей надежности на основе методов стохастической индикации.
- 7.4 Графический метод построения функций распределения ,стохастических индикаторов.
- 7.5. Построение функций распределения и стохастических индикаторов.
- Часть 2. Пути и методы повышения надежности организационно-технических систем и их элементов
- Раздел 8. Техническое обслуживание объектов
- 8.1 Назначение и содержание технического обслуживания.
- 8.2 Системы то и принципы их выбора.
- Раздел 9. Надежность систем и объектов с резервированием
- 9.1 Виды резервирования
- 9.2. Показатели надежности устройств с постоянным нагруженным резервом
- Раздел 10. Расчет надежности организационно-технических систем и их элементов……….……….……….……….……….…………………... 9
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем 246
- 9.3. Показатели надежности при резервировании с ненагруженным резервом
- 9.4. Сопоставление общего и раздельного резервирования
- 9.5. Скользящее резервирование
- 9.6. Резервирование с применением мажоритарного элемента
- 9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
- 9.8. Метод свертки
- 9.9. Логико-вероятностный метод
- 9.10. Оценка надёжности мостиковых структур методом перебора.
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем
- 10.1. Расчет надежности ремонтируемых организационно-технических систем
- Вычисление функций готовности и простоя нерезервированных систем
- 10.2 Особенности расчёта надёжности резервированных восстанавливаемых систем.
- 10.3. Примеры расчётов надёжности восстанавливаемых систем.
- 10.4 Определение надежности с учетом восстанавливаемости и числа запасных элементов
- Раздел 11. Определение необходимого числа запасных элементов
- 11.1. Оптимальное соотношение между надежностью и стоимостью
- 11.2. Определение гарантированного числа запасных элементов
- 11.3. Оптимальное резервирование
- 11.4. Алгоритмы оптимального резервирования
- 11.5. Применение резервирования в системах наведения и управления летательных аппаратов
- Раздел 12. Испытания организационно-технических систем и их элементов
- 12.1. Планы испытаний
- 12.2 Оценка показателей надежности по результатам испытаний.
- 12.2.1 Испытания на надежность элементов объектов в составе организационно-технических систем
- 12.2.2.Общие методы оценки показателей надёжности по результатам испытаний
- Эмпирическая функция распределения и гистограмма результатов испытаний
- Метод проверки гипотез о законах распределения.
- Графические методы.
- Метод максимального правдоподобия.
- Метод квантилей.
- 12.2.3 Интервальные оценки показателей надёжности.
- Определение доверительного интервала для средней наработки на отказ
- 12.2.4 Контрольные испытания.
- Контроль по методу однократной выборки.
- 12.3 Обеспечение надежности объектов ркт в процессе опытной отработки.
- 12.3.1. Логико-вероятностная модель процесса отработки.
- 12.3.2 Определение числа доработок для обеспечения требуемого значения показателя надежности.
- 12.4 Оптимизация программы испытаний сложных объектов по стоимости
- 12.5 Краткая характеристика жизненного цикла сложных технических объектов.
- 12.6.Изменение надёжности летательного аппарата при его отработке в составе организационно-технической системы
- Раздел 13. Общие вопросы технической диагностики
- 13.1 Основные понятия и определения
- 13.2Поиск и устранение неисправностей (отказов)
- 13.3. Методы поиска неисправностей (отказов) и обуславливающих их дефектов.
- 13.3.1 Условия работоспособности объектов. Контроль работоспособности.
- 13.3.2. Методы обнаружения дефектов
- 13.4 Критерии оптимальности процесса поиска неисправностей
- Алгоритм поиска дефектов
- 13.5. Методы построения алгоритмов поиска дефектов
- 13.6 Поиск неисправных элементов методом групповых проверок
- 13.7. Поиск отказавших элементов на основе чисел Фибаначи и золотой пропорции.
- Раздел 14. Обеспечение надежности систем «человек-машина» в организационно-технических системах
- 14.1 Виды совместимости среды и системы «человек-машина»
- 14.2 Методология исследования систем «человек – машина»
- 14.3 Организация рабочих мест
- 14.4 Выбор положения работающего
- 14.5 Пространственная компоновка рабочего места
- 14.6 Размерные характеристики рабочего места (боевого поста)
- 14.7 Взаимное расположение рабочих мест
- 14.8 Размещение технологической и организационной оснастки
- 14.9 Обзор и наблюдение за технологическим процессом
- Раздел 15. Управление надежностью
- Раздел 16. Информационное обеспечение программ обеспечения надежности
- Заключение
- Библиографический список.