Метод определения оптимальных сроков службы отс с учетом характера их применения
По мере увеличения количества и сложности ОТС и входящих в их состав элементов, а также роста предъявляемых к ним требований становится весьма актуальной проблема нахождения наиболее выгодных с точки зрения достижения поставленной цели решений о сроках службы. Однако значительное рассеивание фактических сроков службы даже номинально одинаковых объектов при идентичных условиях эксплуатации приводит к необходимости статистического подхода к оценке приемлемых сроков службы, удовлетворяющих условиям реализации поставленной цели. Под целью обычно понимается определенный, заранее запланированный результат, который должен быть достигнут с помощью определенных действий и средств. Так, при оценке оптимального срока службы совокупности однотипных объектов, которые должны выполнить заданный объем работ в любой моментпоступления заявки на их использование, почти всегда приходится руководствоваться необходимостью так определить величину, чтобы:
– иметь максимально возможное количество работоспособных объектов из числа введенных в строй к этому моменту;
– обеспечить как можно более длительный интервал их эксплуатации .
Суммируя эти требования, можно сказать, что необходимо иметь как можно большее количество исправных объектов в течение возможно более длительного промежутка времени. Эти требования по своей природе противоречивы, ибо с течением времени число отказавших объектов будет увеличиваться, а доля исправно работающих (даже при наличии восстановления) – уменьшается. Под отказом в данном случае понимается достижение элементом (объектом) ОТС одного из предельных состояний, определяющих невозможность его дальнейшей эксплуатации. Такое применение понятия «отказ» при решении ряда задач, связанных со сроком службы, позволяет использовать хорошо разработанный математический аппарат теории надежности.
Таким образом, при поступлении заявки на использование в любой момент времени , когда восстановление отсутствует, заданный объем работы будет выполнен лишь частью объектов, исправных к этому моменту времени. Следовательно, способность рассматриваемой совокупности объектов удовлетворять перечисленным выше требованиям (поставленной цели) в любой момент временибудет характеризоваться функцией
. (4.28)
Функция представляет собой суммарный срок службы объектов, готовых к применению в любой момент, и определяет способность рассматриваемой совокупности объектов удовлетворять сформулированным выше требованиям с течением времени, т.е. характеризует собой суммарный эффективный срок службы. Разделив обе части выражения (4.28) на количество объектов, введенных в эксплуатацию к моменту, получим
, (4.29)
где – функция надежности или долговечности рассматриваемой совокупности объектов. Функцияопределяет, какую часть от текущего календарного временисоставляет средний эффективный срок службы конкретного объекта. Действительно, при, а при. Выражение (4.29) характеризует риск потребителя (пользователя) при принятии решения о сроке службы.
Естественно, что оптимальный срок службы рассматриваемой совокупности объектов или ОТС в целом должен определяться, исходя из максимального соответствия поставленной цели, определяемой формулами (4.28), (4.29), запланированному результату, т.е. из всех возможных значенийдолжно быть выбрано, доставляющее максимум выражению (4.29). Отсюда
(4.30)
где – функция плотности распределения отказов (предельных состояний). Тогда из выражения (4.30) следует
, (4.31)
где – интенсивность отказов-замен объектов;
- отношение Милса
Решение уравнения (4.31) сводится к отысканию на числовой оси такого значения , при котором соответствующие ему значенияипри делении первого на второе дают частное, равное. Припроисходит полная компенсация уменьшения суммарного эффективного срока службы исправных объектов вследствие отказов за счет увеличения срока службы исправных. Принаступление отказов (предельных состояний) принимает массовый характер и их влияние становится решающим. У реальных объектов или ОТС может совмещаться несколько типов отказов в соответствии с их предельными состояниями. При предположении, что отказы возникают независимо друг от друга выражение (4.29) принимает вид
,
откуда
, (4.32)
где – функция интенсивности отказов или замен ().
Ряд значений , вычисленных по формулам (4.31), (4.32) для различных законов распределения отказов, приведен в табл. 4.2.
Таблица 4.2. Оптимальные значения сроков службы при различных законах их распределения
Типы распределений отказов | Плотность распределения | Функция надежности | Оптимальный срок службы θ |
Экспонен-циальное |
|
|
|
Равномерное |
|
|
|
Вейбулла |
|
|
|
Релея |
|
|
|
Степенное |
|
|
|
Нормальное |
|
|
|
Два нормальных |
|
|
|
Вейбулла и экспонен-циальное |
|
|
|
Особый интерес представляет случай, когда отказы распределены по нормальному закону. Тогда из выражения (4.31) следует, что
. (4.33)
где функция , представляющая собой отношение «хвоста» распределения к плотности распределения, называемое отношением Миллса [2,18]. Отсюда при. Значения функциимогут быть затабулированы, что позволит легко определить величинупри известных параметрах нормального распределенияипо табл. 4.3.
Таблица 4.3.
|
|
|
|
|
|
|
|
|
-3.0 | 227.0 | 300.0 | -2.0 | 18.1 | 20.1 | -1.0 | 3.5 | 4.5 |
-2.9 | 166.3 | 169.2 | -1.9 | 14.8 | 16.7 | -0.9 | 3.1 | 4.0 |
-2.7 | 95.8 | 98.5 | -1.7 | 10.2 | 11.9 | -0.7 | 2.4 | 3.1 |
-2.6 | 73.2 | 75.8 | -1.6 | 8.5 | 10.1 | -0.6 | 2.2 | 2.8 |
-2.5 | 56.8 | 59.3 | -1.5 | 7.2 | 8.7 | -0.5 | 2.0 | 2.5 |
-2.4 | 44.3 | 46.7 | -1.4 | 6.1 | 7.5 | -0.4 | 1.8 | 2.2 |
-2.3 | 35.0 | 37.3 | -1.3 | 5.3 | 6.6 | -0.3 | 1.6 | 1.9 |
-2.2 | 27.8 | 30.0 | -1.2 | 4.6 | 5.8 | -0.2 | 1.5 | 1.7 |
-2.1 | 22.3 | 24.4 | -1.1 | 4.0 | 5.1 | -0.1 | 1.4 | 1.5 |
Так, например, при значение.
Следует отметить, что в большинстве случаев величина по формулам (4.31), (4.32), (4.33) в конечном виде не вычисляется и возможно лишь приближенное решение.
Таким образом, изложенный выше подход к оценке оптимального срока службы позволяет при известных типах распределения отказов (предельных состояний) так выбрать его, чтобы суммарная продолжительность сроков службы объектов, работоспособных к моменту, была максимальной, т.е. полностью использовать способность объектов или ОТС рассматриваемой совокупности удовлетворять поставленной цели: иметь возможно большее количество исправных объектов в течение возможно более длительного промежутка времени, содержащего возможный момент поступления заявки на их применение. Для практического определения величиныпо формулам (4.31), (4.32), (4.33) необходимо знание лишь начальной части кривой плотности распределения отказов, что значительно облегчает задачу в случае, когда данные о типах распределения отказов отсутствуют. Величинаи соответствующее ей значение функции надежностиоднозначно определяют оптимальный гамма-процентный ресурс объектов в зависимости от их внутренних свойств и особенностей применения. Значениепри этом устанавливает минимально допустимый в соответствии со сформулированными условиями оптимальности уровень безотказности и может быть использовано при задании минимально допустимого уровня безотказности (долговечности) объекта или ОТС в целом на этапе проектирования при известных расчетных данных о надежности его элементов.
- Министерство образования и науки
- Введение
- Часть 1. Основы теории надежности организационно-технических систем и входящих в их состав объектов
- Раздел 1. Описание свойств организационно-технических систем и входящих в их состав объектов
- 1.1 Системный подход к исследованию надежности сложных технических комплексов
- 1.2Техническое состояние объектов в составе организационно-технических систем
- 1.3. Основные термины и определения в области надежности технических объектов.
- 1.4. Организационно-техническая система и ее свойства
- 1.5. Учет человеческого фактора в организационно-технических системах
- 1.6. Качество организационно-технических систем
- 1.7. Краткая характеристика жизненного цикла сложных технических объектов в составе организационно – технических систем
- Раздел 2. Модели отказов технических объектов
- 2.1. Модель отказов при мгновенных повреждениях.
- 2.2. Модель отказов, обусловленных накапливающимися повреждениями.
- 2.3 Модель “Нагрузка – сопротивляемость объекта”.
- 2.4 Модели параметрических отказов.
- 2.4.1. Модель параметрического отказа при одном параметре, характеризующем работоспособность объекта.
- 2.4.2.Модель параметрической надежности объекта при нескольких параметрах, характеризующих работоспособность его систем и элементов.
- 2.5. Физические основы процессов разрушения твердых тел
- Раздел 3. Показатели надежности организационно-технических систем и их элементов
- 3.1. Особенности показателей надежности организационно-технических систем и их элементов
- 3.2. Показатели безотказности невосстанавливаемых объектов
- 3.3. Показатели безотказности объектов с мгновенным восстановлением.
- 3.4. Комплексные показатели надежности организационно-технических систем
- 3.4.1. Функция готовности объектов с конечным временем восстановления
- 3.4.2 Показатель нахождения объекта в дежурном режиме
- 3.4.3 Показатель (коэффициент) готовности объектов, неконтролируемых в промежутках между проведением технических обслуживаний
- 3.4.4 Выбор оптимального значения периодичности технического обслуживания
- 3.4.5. Комплексные показатели готовности организационно технических систем
- 3.5. Особенности оценки надежности программного обеспечения
- Раздел 4. Показатели долговечности
- 4.1 Основные формулы и определения
- 4.2 Основные показатели долговечности.
- 4.3 Задание требований к гамма-процентному сроку службы
- 4.4 Задание гамма-процентных ресурсов.
- Относительно r1, r2, при заданных значениях , b1, b2, c1, c2, t.
- 4.5 Экспертно-факторный подход к оценке и прогнозированию долговечности организационно-технических систем и их элементов.
- Метод определения оптимальных сроков службы отс с учетом характера их применения
- 4.7 Оценка сроков службы объектов с учетом физического и морального износа
- Раздел 5. Ремонтопригодность
- 5.1 Показатели ремонтопригодности
- 5.2Организацияпоиска и устранения дефектов, неисправностей и отказов
- 6. Сохраняемость
- 6.1 Анализ факторов, влияющих на сохраняемость объектов
- 6.2 Консервация объектов
- 6.3 Периодичность проверок объектов при хранении
- 6.4 Контроль и поддержание температурно-влажностного режима в хранилищах
- 6.5. Особенности хранения крупногабаритных элементов комплексов летательных аппаратов.
- 6.6. Предотвращение смятия баков ракет-носителей внешним избыточным давлением.
- 6.7. Особенности сохраняемости крупногабаритных элементов ракетно-космической техники при перевозках железнодорожным транспортом.
- 6.8 Определение показателей безотказности объектов в переменном режиме. Физический принцип надежности н.М. Седякина.
- Раздел 7. Определение показателей надежности элементов организационно-технических систем на основе методов теории стохастической индикации.
- 7.1 Основы теории стохастической индикации
- 7.2 Физическая природа стохастических индикаторов.
- 7.3 Методы определения показателей надежности на основе методов стохастической индикации.
- 7.4 Графический метод построения функций распределения ,стохастических индикаторов.
- 7.5. Построение функций распределения и стохастических индикаторов.
- Часть 2. Пути и методы повышения надежности организационно-технических систем и их элементов
- Раздел 8. Техническое обслуживание объектов
- 8.1 Назначение и содержание технического обслуживания.
- 8.2 Системы то и принципы их выбора.
- Раздел 9. Надежность систем и объектов с резервированием
- 9.1 Виды резервирования
- 9.2. Показатели надежности устройств с постоянным нагруженным резервом
- Раздел 10. Расчет надежности организационно-технических систем и их элементов……….……….……….……….……….…………………... 9
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем 246
- 9.3. Показатели надежности при резервировании с ненагруженным резервом
- 9.4. Сопоставление общего и раздельного резервирования
- 9.5. Скользящее резервирование
- 9.6. Резервирование с применением мажоритарного элемента
- 9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
- 9.8. Метод свертки
- 9.9. Логико-вероятностный метод
- 9.10. Оценка надёжности мостиковых структур методом перебора.
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем
- 10.1. Расчет надежности ремонтируемых организационно-технических систем
- Вычисление функций готовности и простоя нерезервированных систем
- 10.2 Особенности расчёта надёжности резервированных восстанавливаемых систем.
- 10.3. Примеры расчётов надёжности восстанавливаемых систем.
- 10.4 Определение надежности с учетом восстанавливаемости и числа запасных элементов
- Раздел 11. Определение необходимого числа запасных элементов
- 11.1. Оптимальное соотношение между надежностью и стоимостью
- 11.2. Определение гарантированного числа запасных элементов
- 11.3. Оптимальное резервирование
- 11.4. Алгоритмы оптимального резервирования
- 11.5. Применение резервирования в системах наведения и управления летательных аппаратов
- Раздел 12. Испытания организационно-технических систем и их элементов
- 12.1. Планы испытаний
- 12.2 Оценка показателей надежности по результатам испытаний.
- 12.2.1 Испытания на надежность элементов объектов в составе организационно-технических систем
- 12.2.2.Общие методы оценки показателей надёжности по результатам испытаний
- Эмпирическая функция распределения и гистограмма результатов испытаний
- Метод проверки гипотез о законах распределения.
- Графические методы.
- Метод максимального правдоподобия.
- Метод квантилей.
- 12.2.3 Интервальные оценки показателей надёжности.
- Определение доверительного интервала для средней наработки на отказ
- 12.2.4 Контрольные испытания.
- Контроль по методу однократной выборки.
- 12.3 Обеспечение надежности объектов ркт в процессе опытной отработки.
- 12.3.1. Логико-вероятностная модель процесса отработки.
- 12.3.2 Определение числа доработок для обеспечения требуемого значения показателя надежности.
- 12.4 Оптимизация программы испытаний сложных объектов по стоимости
- 12.5 Краткая характеристика жизненного цикла сложных технических объектов.
- 12.6.Изменение надёжности летательного аппарата при его отработке в составе организационно-технической системы
- Раздел 13. Общие вопросы технической диагностики
- 13.1 Основные понятия и определения
- 13.2Поиск и устранение неисправностей (отказов)
- 13.3. Методы поиска неисправностей (отказов) и обуславливающих их дефектов.
- 13.3.1 Условия работоспособности объектов. Контроль работоспособности.
- 13.3.2. Методы обнаружения дефектов
- 13.4 Критерии оптимальности процесса поиска неисправностей
- Алгоритм поиска дефектов
- 13.5. Методы построения алгоритмов поиска дефектов
- 13.6 Поиск неисправных элементов методом групповых проверок
- 13.7. Поиск отказавших элементов на основе чисел Фибаначи и золотой пропорции.
- Раздел 14. Обеспечение надежности систем «человек-машина» в организационно-технических системах
- 14.1 Виды совместимости среды и системы «человек-машина»
- 14.2 Методология исследования систем «человек – машина»
- 14.3 Организация рабочих мест
- 14.4 Выбор положения работающего
- 14.5 Пространственная компоновка рабочего места
- 14.6 Размерные характеристики рабочего места (боевого поста)
- 14.7 Взаимное расположение рабочих мест
- 14.8 Размещение технологической и организационной оснастки
- 14.9 Обзор и наблюдение за технологическим процессом
- Раздел 15. Управление надежностью
- Раздел 16. Информационное обеспечение программ обеспечения надежности
- Заключение
- Библиографический список.