13.3.1 Условия работоспособности объектов. Контроль работоспособности.
Состояние ОД характеризуется совокупностью диагностических признаков. Так, условия работоспособности по одному параметру непрерывных объектов задаются неравенствами, которые ограничивают его значения, например, с одной стороны:
(Rи > 50 Мом, сопротивление изоляции);
(Rи 50 Мом, сопротивление изоляции);
(Rи < 50 Мом, сопротивление изоляции).
Если состояние ОД определяется несколькими диагностическими признаками, то задача контроля работоспособности сводят к проверке рассмотренных выше неравенств для каждого из параметров. Например, контроль состояния ОД может осуществляться по показателям переходной характеристики (рис. 13.4):
Рис. 13.5. Переходная характеристика
На рис.13.4 приянты следующие обозначения: -величина перерегулирования; -статическая точность; -число колебаний; -крутизна; -время переходного процесса
Для решения задачи контроля в этом случае необходимо задать условия работоспособности вида ,,,,(индекс “доп” означает допустимое значение).
Если в качестве диагностических признаков рассматривает характеристика вида , где ивходныая и выходная переменные, то условия работоспособности определяются значением отклонения текущей характеристикиот номинальной .При этом сходства и различия этих характеристик определяется следующими критериями: 1. Критерий среднего отклонения
.
Недостатком этого критерия является одинаковая чувствительность как к величине абсолютного отклонения, так и к длительности интервала, не котором оценивается отклонение.
2. Критерий среднеквадратичного отклонения
.
Этот критерий более чувствителен к величине отклонения, чем к длительности интервала, на котором отклонение оценивается. Он наиболее часто используется на практике.
3. Критерий равномерного приближения
.
При этом критерием близости является максимальное отклонения на интервале
. Если максимальное отклонение мало, то на всем интервале определения функции ибудут мало отличаться друг от друга. Все эти критерии определяющие условия работоспособности ОД сводятся к неравенству где от – допустимое отклонение, а – вид критерия.
В случае дискретных ОД они рассматриваются как преобразователи наборов входных воздействий в выходные , где . Причем при рабочем диагностировании равно числу входных рабочих воздействий.При тестовом диагностировании входные воздействия определяются из условия срабатывания всех элементов в ОД.
Каждый набор имеет вид
где и - значения напряжений на соответствующем входе и выходе, - число входов, -число выходов. Обычно в качестве и рассматриваются сигналы 0 и 1 (0 – напряжение отсутствует, 1 – напряжение имеется). Поскольку каждому входному набору соответствует определенный выходной набор, то условием работоспособности такого дискретного ОД является соответствие всех возможных входных наборов выходным наборам ., т.е. .
При рабочем диагностировании -рабочие воздействия.
При тестовом диагностировании для проверки условий работоспособности необходимо построить минимальную входную последовательность наборов, позволяющую оценивать состояния всех элементов объекта. Например, в случае комбинационной схемы (рис. 13.5) объект имеет четыре входа , входной набор , один выход , выходной набор реализует функцию
.
Рис. 13.6. Комбинационная схема
Проверка элементов схемы (рис.13.5) осуществляется подачей сигналов 1 на входы элемента. Для срабатывания всех элементов объекта необходимо наличие двух единиц. Этому соответствует следующая таблица состояний:
|
| |||
1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 |
Таких наборов оказывается шесть. Из таблицы видно, что для срабатывания всех элементов объекта достаточно четырех входных наборов (), а именно , , , , или , , , , так как 2-й и 3-й, 4-й и 5-й наборы адекватны по воздействию на объект. Таким образом, минимальная тестовая последовательность, достаточная для проверки условия работоспособности, включает четыре вектора или , а условия работоспособности представляют соответствия
; ; ; .
Следует иметь в виду, что в объектах, охваченных отрицательно обратной связью, влияния возникшего дефекта проявляется незначительно при определении состояния ОД по выходу.
Например. Передаточная функции ОД, представленного на рис 13.7. имеет вид
, (13.1)
где - передаточная функция объекта;- передаточная функция звена с обратной связью.
Рис. 13.7. Объект диагностирования с обратной связью
После деления числителя и знаменателя правой части выражения (13.1) на имеет место
. (13.2)
Если коэффициент усиления по модулю велик, что характерно для реальных объектов, то можно считать, что
(13.3)
Так, если , а, то изменениена 50% изменитс 0.9901 до 0.9804.
Таким образом, дефекты, возникающие в самом объекте по выходному сигналу, могут быть не обнаружены.
Иная картина – при наличии дефекта в цепи обратной связи.
Выходной сигнал связан для рассматриваемого ОД с входным следующим образом:
. (13.4)
Если считать, что изменяется только и, то дифференцирование выражения (13.4) дает:
. (13.5)
Деление (13.5) на (13.4) приводит к следующему результату:
. (13.6)
Так как значителен, то выражение (13.6) может быть представлено в виде:
(13.7)
т.е. относительное изменение выходного сигнала пропорционально относительному изменению в цепи обратной связи.
Следовательно, дефекты, возникающие в объекте, не обнаруживаются при контроле состояния по выходу. Дефекты, возникающие в цепи обратной связи, можно обнаружить при контроле выходного сигнала. В этом случае выявить наличие дефекта удается при размыкании цепи обратной связи.
- Министерство образования и науки
- Введение
- Часть 1. Основы теории надежности организационно-технических систем и входящих в их состав объектов
- Раздел 1. Описание свойств организационно-технических систем и входящих в их состав объектов
- 1.1 Системный подход к исследованию надежности сложных технических комплексов
- 1.2Техническое состояние объектов в составе организационно-технических систем
- 1.3. Основные термины и определения в области надежности технических объектов.
- 1.4. Организационно-техническая система и ее свойства
- 1.5. Учет человеческого фактора в организационно-технических системах
- 1.6. Качество организационно-технических систем
- 1.7. Краткая характеристика жизненного цикла сложных технических объектов в составе организационно – технических систем
- Раздел 2. Модели отказов технических объектов
- 2.1. Модель отказов при мгновенных повреждениях.
- 2.2. Модель отказов, обусловленных накапливающимися повреждениями.
- 2.3 Модель “Нагрузка – сопротивляемость объекта”.
- 2.4 Модели параметрических отказов.
- 2.4.1. Модель параметрического отказа при одном параметре, характеризующем работоспособность объекта.
- 2.4.2.Модель параметрической надежности объекта при нескольких параметрах, характеризующих работоспособность его систем и элементов.
- 2.5. Физические основы процессов разрушения твердых тел
- Раздел 3. Показатели надежности организационно-технических систем и их элементов
- 3.1. Особенности показателей надежности организационно-технических систем и их элементов
- 3.2. Показатели безотказности невосстанавливаемых объектов
- 3.3. Показатели безотказности объектов с мгновенным восстановлением.
- 3.4. Комплексные показатели надежности организационно-технических систем
- 3.4.1. Функция готовности объектов с конечным временем восстановления
- 3.4.2 Показатель нахождения объекта в дежурном режиме
- 3.4.3 Показатель (коэффициент) готовности объектов, неконтролируемых в промежутках между проведением технических обслуживаний
- 3.4.4 Выбор оптимального значения периодичности технического обслуживания
- 3.4.5. Комплексные показатели готовности организационно технических систем
- 3.5. Особенности оценки надежности программного обеспечения
- Раздел 4. Показатели долговечности
- 4.1 Основные формулы и определения
- 4.2 Основные показатели долговечности.
- 4.3 Задание требований к гамма-процентному сроку службы
- 4.4 Задание гамма-процентных ресурсов.
- Относительно r1, r2, при заданных значениях , b1, b2, c1, c2, t.
- 4.5 Экспертно-факторный подход к оценке и прогнозированию долговечности организационно-технических систем и их элементов.
- Метод определения оптимальных сроков службы отс с учетом характера их применения
- 4.7 Оценка сроков службы объектов с учетом физического и морального износа
- Раздел 5. Ремонтопригодность
- 5.1 Показатели ремонтопригодности
- 5.2Организацияпоиска и устранения дефектов, неисправностей и отказов
- 6. Сохраняемость
- 6.1 Анализ факторов, влияющих на сохраняемость объектов
- 6.2 Консервация объектов
- 6.3 Периодичность проверок объектов при хранении
- 6.4 Контроль и поддержание температурно-влажностного режима в хранилищах
- 6.5. Особенности хранения крупногабаритных элементов комплексов летательных аппаратов.
- 6.6. Предотвращение смятия баков ракет-носителей внешним избыточным давлением.
- 6.7. Особенности сохраняемости крупногабаритных элементов ракетно-космической техники при перевозках железнодорожным транспортом.
- 6.8 Определение показателей безотказности объектов в переменном режиме. Физический принцип надежности н.М. Седякина.
- Раздел 7. Определение показателей надежности элементов организационно-технических систем на основе методов теории стохастической индикации.
- 7.1 Основы теории стохастической индикации
- 7.2 Физическая природа стохастических индикаторов.
- 7.3 Методы определения показателей надежности на основе методов стохастической индикации.
- 7.4 Графический метод построения функций распределения ,стохастических индикаторов.
- 7.5. Построение функций распределения и стохастических индикаторов.
- Часть 2. Пути и методы повышения надежности организационно-технических систем и их элементов
- Раздел 8. Техническое обслуживание объектов
- 8.1 Назначение и содержание технического обслуживания.
- 8.2 Системы то и принципы их выбора.
- Раздел 9. Надежность систем и объектов с резервированием
- 9.1 Виды резервирования
- 9.2. Показатели надежности устройств с постоянным нагруженным резервом
- Раздел 10. Расчет надежности организационно-технических систем и их элементов……….……….……….……….……….…………………... 9
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем 246
- 9.3. Показатели надежности при резервировании с ненагруженным резервом
- 9.4. Сопоставление общего и раздельного резервирования
- 9.5. Скользящее резервирование
- 9.6. Резервирование с применением мажоритарного элемента
- 9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
- 9.8. Метод свертки
- 9.9. Логико-вероятностный метод
- 9.10. Оценка надёжности мостиковых структур методом перебора.
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем
- 10.1. Расчет надежности ремонтируемых организационно-технических систем
- Вычисление функций готовности и простоя нерезервированных систем
- 10.2 Особенности расчёта надёжности резервированных восстанавливаемых систем.
- 10.3. Примеры расчётов надёжности восстанавливаемых систем.
- 10.4 Определение надежности с учетом восстанавливаемости и числа запасных элементов
- Раздел 11. Определение необходимого числа запасных элементов
- 11.1. Оптимальное соотношение между надежностью и стоимостью
- 11.2. Определение гарантированного числа запасных элементов
- 11.3. Оптимальное резервирование
- 11.4. Алгоритмы оптимального резервирования
- 11.5. Применение резервирования в системах наведения и управления летательных аппаратов
- Раздел 12. Испытания организационно-технических систем и их элементов
- 12.1. Планы испытаний
- 12.2 Оценка показателей надежности по результатам испытаний.
- 12.2.1 Испытания на надежность элементов объектов в составе организационно-технических систем
- 12.2.2.Общие методы оценки показателей надёжности по результатам испытаний
- Эмпирическая функция распределения и гистограмма результатов испытаний
- Метод проверки гипотез о законах распределения.
- Графические методы.
- Метод максимального правдоподобия.
- Метод квантилей.
- 12.2.3 Интервальные оценки показателей надёжности.
- Определение доверительного интервала для средней наработки на отказ
- 12.2.4 Контрольные испытания.
- Контроль по методу однократной выборки.
- 12.3 Обеспечение надежности объектов ркт в процессе опытной отработки.
- 12.3.1. Логико-вероятностная модель процесса отработки.
- 12.3.2 Определение числа доработок для обеспечения требуемого значения показателя надежности.
- 12.4 Оптимизация программы испытаний сложных объектов по стоимости
- 12.5 Краткая характеристика жизненного цикла сложных технических объектов.
- 12.6.Изменение надёжности летательного аппарата при его отработке в составе организационно-технической системы
- Раздел 13. Общие вопросы технической диагностики
- 13.1 Основные понятия и определения
- 13.2Поиск и устранение неисправностей (отказов)
- 13.3. Методы поиска неисправностей (отказов) и обуславливающих их дефектов.
- 13.3.1 Условия работоспособности объектов. Контроль работоспособности.
- 13.3.2. Методы обнаружения дефектов
- 13.4 Критерии оптимальности процесса поиска неисправностей
- Алгоритм поиска дефектов
- 13.5. Методы построения алгоритмов поиска дефектов
- 13.6 Поиск неисправных элементов методом групповых проверок
- 13.7. Поиск отказавших элементов на основе чисел Фибаначи и золотой пропорции.
- Раздел 14. Обеспечение надежности систем «человек-машина» в организационно-технических системах
- 14.1 Виды совместимости среды и системы «человек-машина»
- 14.2 Методология исследования систем «человек – машина»
- 14.3 Организация рабочих мест
- 14.4 Выбор положения работающего
- 14.5 Пространственная компоновка рабочего места
- 14.6 Размерные характеристики рабочего места (боевого поста)
- 14.7 Взаимное расположение рабочих мест
- 14.8 Размещение технологической и организационной оснастки
- 14.9 Обзор и наблюдение за технологическим процессом
- Раздел 15. Управление надежностью
- Раздел 16. Информационное обеспечение программ обеспечения надежности
- Заключение
- Библиографический список.