12.4 Оптимизация программы испытаний сложных объектов по стоимости
Современные сложные технические объекты состоят, как правило, из нескольких автономных элементов. Поэтому испытанию объекта в целом предшествует испытания составляющих его элементов (см. рис.12.1. и 12.2).
Одним из возможных путей сокращения расходов на испытания и отработку объекта является применение так называемой ступенчатой программы испытаний, то есть испытаний с последовательным наращиванием числа испытываемых элементов в соответствии с их функциональным назначением. Подобный подход позволяет сократить как стоимость испытаний объекта, так и время, затрачиваемое на отработку объекта.
Например, испытания многоступенчатых ракет-носителей или ракет космического назначения (РКН) может проводится с последовательным наращиванием «верхних» ступеней по мере отработки «нижних» ступеней. Действительно, одной из основных задач испытаний РКН является обеспечение безотказности РКН в целом, однако в данной ситуации полезная информация о работоспособности и надежности не начавших функционировать «верхних» ступеней РКН отсутствует.
Таким образом, программа неполных испытаний РКН состоит в том, что до тех пор, пока нет обоснованной уверенности в достаточно надежном функционировании первой ступени, нет смысла проводить испытания полноразмерной РКН, поскольку при отказе первой ступени будут выходить из строя все последующие «верхние» ступени. Поэтому целесообразно проводить неполные испытания РКН, в которых на первом этапе испытывается первая ступень, а все последующие «верхние» заменяются макетами, обладающими соответствующими аэродинамическими и весогабаритными характеристиками.
Практика построения ступенчатой отработки ЛА нашла достаточно широкое распространение. Так, например, в США при отработке ракет «Минитмен», «Атлас», «Титан» и др. число неполных пусков составляло в среднем 8…11[25].
Программа построения программы ступенчатой отработки может быть построена на основе полученных ранее уравнений отработки (12.46), (12.47), называемых кривыми роста надежности [1-5]. Параметрами этих уравнений являются значения начальных показателей безотказности ступеней РКН, поступающих на испытания, и показателиэффективности отработки характеризующих вероятность выявления и устраненияi-ой причины отказа или дефекта. В дальнейшем под надежностью ступени и РКН в целом понимается вероятность их безотказного функционирования в полете.
С учетом сказанного возможность количественного описания программы ступенчатых испытаний РКН может быть реализована следующим образом. Так, надежность РКН, состоящем изSступеней после проведенияNлетных испытаний запишется в виде
, (12.54)
где - уравнение отработкиi-ой ступени РКН;
- число испытаний с макетамиi-ой,-ой, …,S-ой ступеней.
Выражение (12.54) предполагает, что неполные испытания проводятся последовательно: на первом этапе проводятся подряд только испытаний первой ступени (поскольку в данном случае использование макетов первой ступени не предусматривается, то), на втором этапе подряд проводятсяиспытаний РКН, состоящего из 1-ой и 2-ой ступеней с макетом 3-ой ступени и т.д.
Общая стоимость Cтакой программы испытаний, определяемой выражением (12.54), составит
(12.55)
где - стоимость испытанияi-ой ступени на проведение испытания с номеромj, включающего стоимость самойi-ой ступени с учетом стоимости макета(ов) и дополнительных затрат на организацию неполных испытаний.
С учетом (12.54), (12.55) задача оптимизации программы ступенчатой отработки (неполных испытаний), обеспечивающей заданное значение показателя безотказности и минимизирующей стоимость программы испытаний, формируется следующим образом [10-15]
(12.56)
,
где N,- целочисленные,, .
В качестве частного случая можно рассмотреть программу испытаний двухступенчатого летательного аппарата (ЛА) с K неполными испытаниями. Кроме того, предполагается, что стоимостиипостоянные в течение всех испытаний.
Тогда уравнение (12.55) преобразуется к виду
. (10.57)
где ,- стоимости испытаний первой и второй ступеней соответственно.
При допущении о непрерывности функций решение поставленной задачи может быть осуществлено, например, по методу неопределенных множителей Лагранжа [17-20].
В этом случае функция Лагранжа принимает вид
. (12.58)
На основе (12.58) составляется система уравнений
(12.59)
Решение системы уравнений (12.59) дает оптимальные значения параметров NиK в виде:
(12.60)
где - параметры уравнений отработки ступеней ЛА, определяемые формулами
Последующая проверка полученного решения (12.60) на минимум с помощью выражений (12.57), (12.58) дает решение поставленной задачи.
Из выражения (12.57) следует, что зависимость относительной стоимости программы отработки от числа неполных пусков, определяемого из уравнения (12.58), имеет вид
(12.61)
Откуда следует, что при стоимость испытаний (12.21) достигает минимума при, то есть при параллельной отработке обеих ступеней в составе ЛА.
С увеличением стоимости второй ступени становится все более экономически выгодной ступенчатая отработка ЛА (), причем по мере увеличения отношенияминимум стоимости сдвигается в сторону большихK, как это показано на рис. 12.15.
Рис. 12.18 Зависимость относительной стоимости программы испытаний от числа неполных пусков для значений относительной стоимости IIступени:при
Рис. 12.19 Зависимость относительной стоимости программы испытаний от числа неполных испытаний IIиIIIступени для значений относительной стоимостиIIступени:при 11 3
- Министерство образования и науки
- Введение
- Часть 1. Основы теории надежности организационно-технических систем и входящих в их состав объектов
- Раздел 1. Описание свойств организационно-технических систем и входящих в их состав объектов
- 1.1 Системный подход к исследованию надежности сложных технических комплексов
- 1.2Техническое состояние объектов в составе организационно-технических систем
- 1.3. Основные термины и определения в области надежности технических объектов.
- 1.4. Организационно-техническая система и ее свойства
- 1.5. Учет человеческого фактора в организационно-технических системах
- 1.6. Качество организационно-технических систем
- 1.7. Краткая характеристика жизненного цикла сложных технических объектов в составе организационно – технических систем
- Раздел 2. Модели отказов технических объектов
- 2.1. Модель отказов при мгновенных повреждениях.
- 2.2. Модель отказов, обусловленных накапливающимися повреждениями.
- 2.3 Модель “Нагрузка – сопротивляемость объекта”.
- 2.4 Модели параметрических отказов.
- 2.4.1. Модель параметрического отказа при одном параметре, характеризующем работоспособность объекта.
- 2.4.2.Модель параметрической надежности объекта при нескольких параметрах, характеризующих работоспособность его систем и элементов.
- 2.5. Физические основы процессов разрушения твердых тел
- Раздел 3. Показатели надежности организационно-технических систем и их элементов
- 3.1. Особенности показателей надежности организационно-технических систем и их элементов
- 3.2. Показатели безотказности невосстанавливаемых объектов
- 3.3. Показатели безотказности объектов с мгновенным восстановлением.
- 3.4. Комплексные показатели надежности организационно-технических систем
- 3.4.1. Функция готовности объектов с конечным временем восстановления
- 3.4.2 Показатель нахождения объекта в дежурном режиме
- 3.4.3 Показатель (коэффициент) готовности объектов, неконтролируемых в промежутках между проведением технических обслуживаний
- 3.4.4 Выбор оптимального значения периодичности технического обслуживания
- 3.4.5. Комплексные показатели готовности организационно технических систем
- 3.5. Особенности оценки надежности программного обеспечения
- Раздел 4. Показатели долговечности
- 4.1 Основные формулы и определения
- 4.2 Основные показатели долговечности.
- 4.3 Задание требований к гамма-процентному сроку службы
- 4.4 Задание гамма-процентных ресурсов.
- Относительно r1, r2, при заданных значениях , b1, b2, c1, c2, t.
- 4.5 Экспертно-факторный подход к оценке и прогнозированию долговечности организационно-технических систем и их элементов.
- Метод определения оптимальных сроков службы отс с учетом характера их применения
- 4.7 Оценка сроков службы объектов с учетом физического и морального износа
- Раздел 5. Ремонтопригодность
- 5.1 Показатели ремонтопригодности
- 5.2Организацияпоиска и устранения дефектов, неисправностей и отказов
- 6. Сохраняемость
- 6.1 Анализ факторов, влияющих на сохраняемость объектов
- 6.2 Консервация объектов
- 6.3 Периодичность проверок объектов при хранении
- 6.4 Контроль и поддержание температурно-влажностного режима в хранилищах
- 6.5. Особенности хранения крупногабаритных элементов комплексов летательных аппаратов.
- 6.6. Предотвращение смятия баков ракет-носителей внешним избыточным давлением.
- 6.7. Особенности сохраняемости крупногабаритных элементов ракетно-космической техники при перевозках железнодорожным транспортом.
- 6.8 Определение показателей безотказности объектов в переменном режиме. Физический принцип надежности н.М. Седякина.
- Раздел 7. Определение показателей надежности элементов организационно-технических систем на основе методов теории стохастической индикации.
- 7.1 Основы теории стохастической индикации
- 7.2 Физическая природа стохастических индикаторов.
- 7.3 Методы определения показателей надежности на основе методов стохастической индикации.
- 7.4 Графический метод построения функций распределения ,стохастических индикаторов.
- 7.5. Построение функций распределения и стохастических индикаторов.
- Часть 2. Пути и методы повышения надежности организационно-технических систем и их элементов
- Раздел 8. Техническое обслуживание объектов
- 8.1 Назначение и содержание технического обслуживания.
- 8.2 Системы то и принципы их выбора.
- Раздел 9. Надежность систем и объектов с резервированием
- 9.1 Виды резервирования
- 9.2. Показатели надежности устройств с постоянным нагруженным резервом
- Раздел 10. Расчет надежности организационно-технических систем и их элементов……….……….……….……….……….…………………... 9
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем 246
- 9.3. Показатели надежности при резервировании с ненагруженным резервом
- 9.4. Сопоставление общего и раздельного резервирования
- 9.5. Скользящее резервирование
- 9.6. Резервирование с применением мажоритарного элемента
- 9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
- 9.8. Метод свертки
- 9.9. Логико-вероятностный метод
- 9.10. Оценка надёжности мостиковых структур методом перебора.
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем
- 10.1. Расчет надежности ремонтируемых организационно-технических систем
- Вычисление функций готовности и простоя нерезервированных систем
- 10.2 Особенности расчёта надёжности резервированных восстанавливаемых систем.
- 10.3. Примеры расчётов надёжности восстанавливаемых систем.
- 10.4 Определение надежности с учетом восстанавливаемости и числа запасных элементов
- Раздел 11. Определение необходимого числа запасных элементов
- 11.1. Оптимальное соотношение между надежностью и стоимостью
- 11.2. Определение гарантированного числа запасных элементов
- 11.3. Оптимальное резервирование
- 11.4. Алгоритмы оптимального резервирования
- 11.5. Применение резервирования в системах наведения и управления летательных аппаратов
- Раздел 12. Испытания организационно-технических систем и их элементов
- 12.1. Планы испытаний
- 12.2 Оценка показателей надежности по результатам испытаний.
- 12.2.1 Испытания на надежность элементов объектов в составе организационно-технических систем
- 12.2.2.Общие методы оценки показателей надёжности по результатам испытаний
- Эмпирическая функция распределения и гистограмма результатов испытаний
- Метод проверки гипотез о законах распределения.
- Графические методы.
- Метод максимального правдоподобия.
- Метод квантилей.
- 12.2.3 Интервальные оценки показателей надёжности.
- Определение доверительного интервала для средней наработки на отказ
- 12.2.4 Контрольные испытания.
- Контроль по методу однократной выборки.
- 12.3 Обеспечение надежности объектов ркт в процессе опытной отработки.
- 12.3.1. Логико-вероятностная модель процесса отработки.
- 12.3.2 Определение числа доработок для обеспечения требуемого значения показателя надежности.
- 12.4 Оптимизация программы испытаний сложных объектов по стоимости
- 12.5 Краткая характеристика жизненного цикла сложных технических объектов.
- 12.6.Изменение надёжности летательного аппарата при его отработке в составе организационно-технической системы
- Раздел 13. Общие вопросы технической диагностики
- 13.1 Основные понятия и определения
- 13.2Поиск и устранение неисправностей (отказов)
- 13.3. Методы поиска неисправностей (отказов) и обуславливающих их дефектов.
- 13.3.1 Условия работоспособности объектов. Контроль работоспособности.
- 13.3.2. Методы обнаружения дефектов
- 13.4 Критерии оптимальности процесса поиска неисправностей
- Алгоритм поиска дефектов
- 13.5. Методы построения алгоритмов поиска дефектов
- 13.6 Поиск неисправных элементов методом групповых проверок
- 13.7. Поиск отказавших элементов на основе чисел Фибаначи и золотой пропорции.
- Раздел 14. Обеспечение надежности систем «человек-машина» в организационно-технических системах
- 14.1 Виды совместимости среды и системы «человек-машина»
- 14.2 Методология исследования систем «человек – машина»
- 14.3 Организация рабочих мест
- 14.4 Выбор положения работающего
- 14.5 Пространственная компоновка рабочего места
- 14.6 Размерные характеристики рабочего места (боевого поста)
- 14.7 Взаимное расположение рабочих мест
- 14.8 Размещение технологической и организационной оснастки
- 14.9 Обзор и наблюдение за технологическим процессом
- Раздел 15. Управление надежностью
- Раздел 16. Информационное обеспечение программ обеспечения надежности
- Заключение
- Библиографический список.