2.5. Физические основы процессов разрушения твердых тел
Основными причинами отказов механических элементов являются износ и нарушение условий трения, недостаточная прочность по критериям статистической прочности мало- или многоцикловой усталости, недопустимые деформации, старение и коррозия материалов, нарушение нормальных условий функционирования и неправильное назначение допусков.
Кинетика процессов механического разрушения нагруженного твердого тела и соответственно, время до разрушения зависят от структуры и свойств материалов тела, от напряжения, вызываемого нагрузкой, и температуры. Для многих твердых материалов (металлов, сплавов, полимеров, полупроводников и т.д.) справедлива температурно-временная зависимость прочности, а именно: зависимость между напряжением , температурой, и временемот момента приложения постоянной механической нагрузки до разрушения образца, известная как формула Журкова [5,14]:
, (2.83)
где - время от момента приложения нагрузки до разрушения;
- период собственных колебаний атомов кристаллической решетки твердого тела (с.);
-начальная энергия активации в отсутствие механических напряжений;
- напряжение материала, обусловленной механической нагрузкой;
- структурный коэффициент (характеристика чувствительности материала к напряжению), определяющий степень уменьшения начального энергетического барьерапод действием приложенного напряжения.
Соответственно, для скорости процесса разрушения на основании формулы (2.81) можно записать выражение, характерное для скорости Vтермоактивиционных процессов [5,14].
, (2.84)
где - частота собственных тепловых колебаний атомов в решетке.
В уравнениях (2.83) и (2.84) величина - энергия активации процесса разрушения.
Все изменения прочностных свойств материалов, происходящие при изменении их чистоты, при тепловой обработке и деформировании, связаны с изменением только величины . Следовательно,может быть использована как количественная мера прочности, т.е. мера сопротивления разрушению, учитывающая временную и температурную зависимость прочности. Действительно, так какине меняются и известны, то знаниепозволит построить все семейство временных зависимостей прочности при разных температурах. В свою очередь значениеможет быть вычислено из временной зависимости, полученной при одной температуре [14]:
, (2.85)
где - тангенс угла наклона прямой.
Рис. 2.9. Типичная зависимость долговечности
материала от напряжения при различных
температурах ().
В частном случае, когда температура и долговечностьфиксированы, из уравнения 2.83 следует, чтообратно пропорционально разрывному напряжению:
. (2.84)
Уравнение (2.83) можно использовать для определения длительности эксплуатации материала в нагруженном состоянии до разрушения при практических расчетах прочности.
Время разрыва при постоянной нагрузке образцов, изготовленных из одного материала, есть случайная величина, зависящая от случайных размеров и распределения элементарных дефектов в образцах материалов.
В процессе эксплуатации объекты и элементы радиоэлектронной аппаратуры (РЭА), подвергаются следующим видом воздействия, приведенным в таблице 2.2., где приняты следующие обозначения:
ЭВП – электронно-вакуумные приборы;
ПП – полупроводниковые приборы;
КОНД – конденсаторы;
РЕЗИСТ – резисторы;
ИС – интегральные схемы;
М – металлические элементы;
Д – диэлектрические элементы.
Таблица 2.2. Влияние физических процессов на надежность радиоэлектронной аппаратуры при эксплуатации
Вид процессов в материале | Классы РЭА и материалы | |||||||||||||
ЭВП | ПП | Конд. | Резист. | ИС | Реле и соед. | |||||||||
м | д | м | д | пп | м | д | м | д | м | д | пп | м | д | |
Изм. соства |
|
|
|
| + |
| + | + |
|
| + | + |
|
|
Коррозия | + |
| + |
|
| + |
| + |
| + |
|
| + |
|
Кристализ-я |
| + |
| + |
|
| + |
| + |
| + |
|
| + |
Сублимация | + |
| + |
| + |
|
| + |
|
|
| + | + |
|
Адсорбция | + |
|
|
| + |
|
| + |
| + |
| + |
|
|
Диффузия | + | + | + | + | + |
| + | + | + |
| + | + | + |
|
Дифф. газов | + | + | + | + | + |
| + | + | + |
| + | + | + |
|
Мех. разруш. | + | + | + | + | + |
| + | + | + | + | + | + | + | + |
В общем случае зависимость показателя надежности РЭА от условий эксплуатации можно представить в виде:
, (2.87)
где ,- температура и влажность окружающей среды;- ускорение механической нагрузки, воздействующей на элемент.
Если действие всех перечисленных в таблице 2.2 факторов полагать независимыми, то зависимость интенсивности отказов от условий эксплутации элемента можно представить в виде [14]
, (2.88)
где ,…,– коэффициенты, характеризующие влияние отдельных видов воздействий на показатели надежности,- интенсивность отказа элементов в расчетном режиме работы.
Применительно к интегральным схемам формула (2.84) может быть представлена в аддитивной форме следующим образом [14,23]
где - площадь металлизации, мм2;- количество степеней диффузии,- сумма площадей металлизации,- площадь кристалла, мм2;- коэффициенты качества (температурный и условий работы) ИС соответственно;- интенсивность отказа сварных соединений;– интенсивность отказа металлизации;– интенсивность отказа, обусловленного диффузией;– интенсивность отказа кристалла;– интенсивность отказа мест элементов подверженных диффузии;– интенсивность отказа по условию потери герметичности,- интенсивность отказа площадей металлизации и активных элементов.
Коэффициент качества характеризует жесткость требований, предъявляемых к условиям изготовления и приемки ИС. Если схемы соответствуют классу А стандартаMIL-STD-883, в производствах которых введено термоциклирование, то; Для ИС без термоциклирования и без электротренировок; Для массовых ИС[23].
Коэффициент в зависимости от температуры, при которой работают ИС приведено в таблице 2.3:
Таблица 2.3. Значения коэффициентов .
Температура ℃ | 25 | 55 | 75 | 100 | 125 | 150 | 200 | 250 | 300 |
1 | 2 | 3.3 | 6.1 | 11.1 | 21 | 70 | 237 | 789 |
Коэффициент , характеризующий условия работы ИС (влага, вибрации, удары, солевой туман), изменяется в пределах от 4 до 8. Например, для автомобильной РЭА принимают[23].
- Министерство образования и науки
- Введение
- Часть 1. Основы теории надежности организационно-технических систем и входящих в их состав объектов
- Раздел 1. Описание свойств организационно-технических систем и входящих в их состав объектов
- 1.1 Системный подход к исследованию надежности сложных технических комплексов
- 1.2Техническое состояние объектов в составе организационно-технических систем
- 1.3. Основные термины и определения в области надежности технических объектов.
- 1.4. Организационно-техническая система и ее свойства
- 1.5. Учет человеческого фактора в организационно-технических системах
- 1.6. Качество организационно-технических систем
- 1.7. Краткая характеристика жизненного цикла сложных технических объектов в составе организационно – технических систем
- Раздел 2. Модели отказов технических объектов
- 2.1. Модель отказов при мгновенных повреждениях.
- 2.2. Модель отказов, обусловленных накапливающимися повреждениями.
- 2.3 Модель “Нагрузка – сопротивляемость объекта”.
- 2.4 Модели параметрических отказов.
- 2.4.1. Модель параметрического отказа при одном параметре, характеризующем работоспособность объекта.
- 2.4.2.Модель параметрической надежности объекта при нескольких параметрах, характеризующих работоспособность его систем и элементов.
- 2.5. Физические основы процессов разрушения твердых тел
- Раздел 3. Показатели надежности организационно-технических систем и их элементов
- 3.1. Особенности показателей надежности организационно-технических систем и их элементов
- 3.2. Показатели безотказности невосстанавливаемых объектов
- 3.3. Показатели безотказности объектов с мгновенным восстановлением.
- 3.4. Комплексные показатели надежности организационно-технических систем
- 3.4.1. Функция готовности объектов с конечным временем восстановления
- 3.4.2 Показатель нахождения объекта в дежурном режиме
- 3.4.3 Показатель (коэффициент) готовности объектов, неконтролируемых в промежутках между проведением технических обслуживаний
- 3.4.4 Выбор оптимального значения периодичности технического обслуживания
- 3.4.5. Комплексные показатели готовности организационно технических систем
- 3.5. Особенности оценки надежности программного обеспечения
- Раздел 4. Показатели долговечности
- 4.1 Основные формулы и определения
- 4.2 Основные показатели долговечности.
- 4.3 Задание требований к гамма-процентному сроку службы
- 4.4 Задание гамма-процентных ресурсов.
- Относительно r1, r2, при заданных значениях , b1, b2, c1, c2, t.
- 4.5 Экспертно-факторный подход к оценке и прогнозированию долговечности организационно-технических систем и их элементов.
- Метод определения оптимальных сроков службы отс с учетом характера их применения
- 4.7 Оценка сроков службы объектов с учетом физического и морального износа
- Раздел 5. Ремонтопригодность
- 5.1 Показатели ремонтопригодности
- 5.2Организацияпоиска и устранения дефектов, неисправностей и отказов
- 6. Сохраняемость
- 6.1 Анализ факторов, влияющих на сохраняемость объектов
- 6.2 Консервация объектов
- 6.3 Периодичность проверок объектов при хранении
- 6.4 Контроль и поддержание температурно-влажностного режима в хранилищах
- 6.5. Особенности хранения крупногабаритных элементов комплексов летательных аппаратов.
- 6.6. Предотвращение смятия баков ракет-носителей внешним избыточным давлением.
- 6.7. Особенности сохраняемости крупногабаритных элементов ракетно-космической техники при перевозках железнодорожным транспортом.
- 6.8 Определение показателей безотказности объектов в переменном режиме. Физический принцип надежности н.М. Седякина.
- Раздел 7. Определение показателей надежности элементов организационно-технических систем на основе методов теории стохастической индикации.
- 7.1 Основы теории стохастической индикации
- 7.2 Физическая природа стохастических индикаторов.
- 7.3 Методы определения показателей надежности на основе методов стохастической индикации.
- 7.4 Графический метод построения функций распределения ,стохастических индикаторов.
- 7.5. Построение функций распределения и стохастических индикаторов.
- Часть 2. Пути и методы повышения надежности организационно-технических систем и их элементов
- Раздел 8. Техническое обслуживание объектов
- 8.1 Назначение и содержание технического обслуживания.
- 8.2 Системы то и принципы их выбора.
- Раздел 9. Надежность систем и объектов с резервированием
- 9.1 Виды резервирования
- 9.2. Показатели надежности устройств с постоянным нагруженным резервом
- Раздел 10. Расчет надежности организационно-технических систем и их элементов……….……….……….……….……….…………………... 9
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем 246
- 9.3. Показатели надежности при резервировании с ненагруженным резервом
- 9.4. Сопоставление общего и раздельного резервирования
- 9.5. Скользящее резервирование
- 9.6. Резервирование с применением мажоритарного элемента
- 9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
- 9.8. Метод свертки
- 9.9. Логико-вероятностный метод
- 9.10. Оценка надёжности мостиковых структур методом перебора.
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем
- 10.1. Расчет надежности ремонтируемых организационно-технических систем
- Вычисление функций готовности и простоя нерезервированных систем
- 10.2 Особенности расчёта надёжности резервированных восстанавливаемых систем.
- 10.3. Примеры расчётов надёжности восстанавливаемых систем.
- 10.4 Определение надежности с учетом восстанавливаемости и числа запасных элементов
- Раздел 11. Определение необходимого числа запасных элементов
- 11.1. Оптимальное соотношение между надежностью и стоимостью
- 11.2. Определение гарантированного числа запасных элементов
- 11.3. Оптимальное резервирование
- 11.4. Алгоритмы оптимального резервирования
- 11.5. Применение резервирования в системах наведения и управления летательных аппаратов
- Раздел 12. Испытания организационно-технических систем и их элементов
- 12.1. Планы испытаний
- 12.2 Оценка показателей надежности по результатам испытаний.
- 12.2.1 Испытания на надежность элементов объектов в составе организационно-технических систем
- 12.2.2.Общие методы оценки показателей надёжности по результатам испытаний
- Эмпирическая функция распределения и гистограмма результатов испытаний
- Метод проверки гипотез о законах распределения.
- Графические методы.
- Метод максимального правдоподобия.
- Метод квантилей.
- 12.2.3 Интервальные оценки показателей надёжности.
- Определение доверительного интервала для средней наработки на отказ
- 12.2.4 Контрольные испытания.
- Контроль по методу однократной выборки.
- 12.3 Обеспечение надежности объектов ркт в процессе опытной отработки.
- 12.3.1. Логико-вероятностная модель процесса отработки.
- 12.3.2 Определение числа доработок для обеспечения требуемого значения показателя надежности.
- 12.4 Оптимизация программы испытаний сложных объектов по стоимости
- 12.5 Краткая характеристика жизненного цикла сложных технических объектов.
- 12.6.Изменение надёжности летательного аппарата при его отработке в составе организационно-технической системы
- Раздел 13. Общие вопросы технической диагностики
- 13.1 Основные понятия и определения
- 13.2Поиск и устранение неисправностей (отказов)
- 13.3. Методы поиска неисправностей (отказов) и обуславливающих их дефектов.
- 13.3.1 Условия работоспособности объектов. Контроль работоспособности.
- 13.3.2. Методы обнаружения дефектов
- 13.4 Критерии оптимальности процесса поиска неисправностей
- Алгоритм поиска дефектов
- 13.5. Методы построения алгоритмов поиска дефектов
- 13.6 Поиск неисправных элементов методом групповых проверок
- 13.7. Поиск отказавших элементов на основе чисел Фибаначи и золотой пропорции.
- Раздел 14. Обеспечение надежности систем «человек-машина» в организационно-технических системах
- 14.1 Виды совместимости среды и системы «человек-машина»
- 14.2 Методология исследования систем «человек – машина»
- 14.3 Организация рабочих мест
- 14.4 Выбор положения работающего
- 14.5 Пространственная компоновка рабочего места
- 14.6 Размерные характеристики рабочего места (боевого поста)
- 14.7 Взаимное расположение рабочих мест
- 14.8 Размещение технологической и организационной оснастки
- 14.9 Обзор и наблюдение за технологическим процессом
- Раздел 15. Управление надежностью
- Раздел 16. Информационное обеспечение программ обеспечения надежности
- Заключение
- Библиографический список.