6.1 Анализ факторов, влияющих на сохраняемость объектов
Под сохраняемостью понимается способность объекта сохранять работоспособное состояние в течение и после хранения и/или транспортирования [1].
Хранение – содержание объектов, не используемых по назначению, в сотоянии, обеспечивающим их сохранность, исправность, и приведение в готовность к применению в установленные сроки [1-5].
В общем случае сохраняемость определяется способностью объекта противостоять отрицательному влиянию условий хранения и транспортирования на безотказность и долговечность.
В процессе хранения элементы ОТС подвергаются воздействию комплекса внешних неблагоприятных факторов (рис. 1.4). Результаты этого воздействия определяются условиями и продолжительностью хранения. Экспериментально установлено, что показатели надежности элементов ОТС после хранения могут существенно сниженны по сравнению с аналогичными показателями до хранения (см. табл. 2.2) [23]. Для снижения влияния неблагоприятных воздействий в условиях хранения на показатели надежности проводится ряд специальных мероприятий, направленных на обеспечение надежности (сохраняемости) объектов.
Процессы, вызывающие изменения параметров и характеристик элементов, в значительной степени зависят от внешних условий и режимов работы: окружающей среды, влажности, давления, состава окружающей газовой среды, механических нагрузок, рассеваемой мощности, вида электрической нагрузки, длительности и периодичности работы и других факторов. Характер влияния ряда внешних воздействий на объекты (полупроводниковые элементы) приведены в таблицах 2.2 и 6.1.
Во всех случаях окружающая температура и рассеваемая мощность в наибольшей степени ускоряет процесс изменения параметров, вызывающих неисправности и отказы. Сильная зависимость параметров объекта от температуры является принципиальной особенностью
Таблица 6.1. Влияние некоторых внешних воздействий на полупроводниковые приборы.
Вид внешнего воздействия | Основные вызываемые или ускоряемые процессы | Типичные дефекты |
Повышенная температура | Высыхание защитных покрытий и деформация их Выделение газов Расплавление Растрескивание кристаллов Миграция захваченных примесей, влаги и газов Ионизация примесей Изменение электрических характеристик Увеличение размеров
| Снижение предельно допустимых напряжений (пробой переходов) Ухудшение электрических характеристик Потеря герметичности Обрывы и короткие замыкания |
Пониженная температура | Конденсация влаги Растрескивание кристаллов Изменение электрических характеристик Сокращение размеров
| Пробой переходов Ухудшение электрических характеристик Потеря герметичности Обрывы и короткие замыкания |
Повышенная относительная влажность | Адсорбция и абсорбция влаги Химические реакции с влагой Электролиз Коррозия | Ухудшение электрических характеристик Появление нестабильности Коррозия выводов и корпуса Повреждение лакокрасочных покрытий
|
Резкие неоднократные изменения температуры | Механические напряжения в местах спая Растрескивание кристаллов Растрескивание и деформация покрытий Изменение размеров | Потеря герметичности Обрывы и короткие замыкания Ухудшение электрических характеристик |
Пониженное давление | Ухудшение теплоотдачи Уменьшение пробивного напряжения | Перегрев Наружный пробой между выводами или между выводами и корпусом |
Механические воздействия (вибрация, удары, постоянные ускорения) | Механические напряжения Усталость | Обрывы и короткие замыкания Потеря герметичности |
принципиальной особенностью полупроводниковых приборов, связанной с физическими свойствами полупроводников. Процесс, протекающий на поверхности кристалла проводника, оказывает определяющее влияние на величину электрических параметров приборов. Их стабильность, дрейф во времени определяется изменениями температуры (табл. 2.2).
Оксидные пленки на германии и кремнии, будучи в обычными условиях пористыми, способны адсорбировать атомы и ионы различных веществ из окружающей атмосферы. Адсорбированная влага является одним из основных факторов, определяющая нестабильность на поверхности полупроводников [5,14,23].
Ниже приводятся распределения отказавших логических интегральных схем в процентах в зависимости от причин, вызвавших отказ [6,23]:
Дефекты узла крепления проводников…………………… | 21,5 |
Дефекты травления………………………………………… | 17.2 |
Неаккуратная транспортировка и обращение……………. | 12.9 |
Дефекты герметизации…………………………………….. | 17.2 |
Растрескивание керамического корпуса………………….. | 12.9 |
Дефекты крепления кристалла к корпусу………………… | 8.3 |
Некачественное лужение выводов………………………... | 4.3 |
Прочие дефекты……………………………………………. | 6.4 |
|
|
Опыт хранения различных объектов и материальных средств показывает, что минимальное воздействие разрушающих факторов окружающей среды обеспечивается при следующих ее параметрах [2,23]:
- неизменной относительной влажности воздуха 10-30%;
- постоянной положительной температуре воздуха 5-10%;
- отсутствием в воздухе вредных примесей;
- отсутствием в значительной циркуляции воздуха и воздействия прямых солнечных лучей;
- достаточной защищенностью средств от воздействия электромагнитного и радиационного излучения;
- отсутствием в хранилищах насекомых, грызунов и плесени.
Обеспечение оптимальных условий хранения для самых разных объектов требует создания специального оборудования, специально оборудованных хранилищ, ангаров, парков и т.д., снабженных системой кондиционирования воздуха или климат-контроля. Это, естественно, связано с большими экономическими затратами. В общем случае хранение должно обеспечить минимальный расход технических ресурсов объектов при заданных ограничениях на стоимость хранения.
- Министерство образования и науки
- Введение
- Часть 1. Основы теории надежности организационно-технических систем и входящих в их состав объектов
- Раздел 1. Описание свойств организационно-технических систем и входящих в их состав объектов
- 1.1 Системный подход к исследованию надежности сложных технических комплексов
- 1.2Техническое состояние объектов в составе организационно-технических систем
- 1.3. Основные термины и определения в области надежности технических объектов.
- 1.4. Организационно-техническая система и ее свойства
- 1.5. Учет человеческого фактора в организационно-технических системах
- 1.6. Качество организационно-технических систем
- 1.7. Краткая характеристика жизненного цикла сложных технических объектов в составе организационно – технических систем
- Раздел 2. Модели отказов технических объектов
- 2.1. Модель отказов при мгновенных повреждениях.
- 2.2. Модель отказов, обусловленных накапливающимися повреждениями.
- 2.3 Модель “Нагрузка – сопротивляемость объекта”.
- 2.4 Модели параметрических отказов.
- 2.4.1. Модель параметрического отказа при одном параметре, характеризующем работоспособность объекта.
- 2.4.2.Модель параметрической надежности объекта при нескольких параметрах, характеризующих работоспособность его систем и элементов.
- 2.5. Физические основы процессов разрушения твердых тел
- Раздел 3. Показатели надежности организационно-технических систем и их элементов
- 3.1. Особенности показателей надежности организационно-технических систем и их элементов
- 3.2. Показатели безотказности невосстанавливаемых объектов
- 3.3. Показатели безотказности объектов с мгновенным восстановлением.
- 3.4. Комплексные показатели надежности организационно-технических систем
- 3.4.1. Функция готовности объектов с конечным временем восстановления
- 3.4.2 Показатель нахождения объекта в дежурном режиме
- 3.4.3 Показатель (коэффициент) готовности объектов, неконтролируемых в промежутках между проведением технических обслуживаний
- 3.4.4 Выбор оптимального значения периодичности технического обслуживания
- 3.4.5. Комплексные показатели готовности организационно технических систем
- 3.5. Особенности оценки надежности программного обеспечения
- Раздел 4. Показатели долговечности
- 4.1 Основные формулы и определения
- 4.2 Основные показатели долговечности.
- 4.3 Задание требований к гамма-процентному сроку службы
- 4.4 Задание гамма-процентных ресурсов.
- Относительно r1, r2, при заданных значениях , b1, b2, c1, c2, t.
- 4.5 Экспертно-факторный подход к оценке и прогнозированию долговечности организационно-технических систем и их элементов.
- Метод определения оптимальных сроков службы отс с учетом характера их применения
- 4.7 Оценка сроков службы объектов с учетом физического и морального износа
- Раздел 5. Ремонтопригодность
- 5.1 Показатели ремонтопригодности
- 5.2Организацияпоиска и устранения дефектов, неисправностей и отказов
- 6. Сохраняемость
- 6.1 Анализ факторов, влияющих на сохраняемость объектов
- 6.2 Консервация объектов
- 6.3 Периодичность проверок объектов при хранении
- 6.4 Контроль и поддержание температурно-влажностного режима в хранилищах
- 6.5. Особенности хранения крупногабаритных элементов комплексов летательных аппаратов.
- 6.6. Предотвращение смятия баков ракет-носителей внешним избыточным давлением.
- 6.7. Особенности сохраняемости крупногабаритных элементов ракетно-космической техники при перевозках железнодорожным транспортом.
- 6.8 Определение показателей безотказности объектов в переменном режиме. Физический принцип надежности н.М. Седякина.
- Раздел 7. Определение показателей надежности элементов организационно-технических систем на основе методов теории стохастической индикации.
- 7.1 Основы теории стохастической индикации
- 7.2 Физическая природа стохастических индикаторов.
- 7.3 Методы определения показателей надежности на основе методов стохастической индикации.
- 7.4 Графический метод построения функций распределения ,стохастических индикаторов.
- 7.5. Построение функций распределения и стохастических индикаторов.
- Часть 2. Пути и методы повышения надежности организационно-технических систем и их элементов
- Раздел 8. Техническое обслуживание объектов
- 8.1 Назначение и содержание технического обслуживания.
- 8.2 Системы то и принципы их выбора.
- Раздел 9. Надежность систем и объектов с резервированием
- 9.1 Виды резервирования
- 9.2. Показатели надежности устройств с постоянным нагруженным резервом
- Раздел 10. Расчет надежности организационно-технических систем и их элементов……….……….……….……….……….…………………... 9
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем 246
- 9.3. Показатели надежности при резервировании с ненагруженным резервом
- 9.4. Сопоставление общего и раздельного резервирования
- 9.5. Скользящее резервирование
- 9.6. Резервирование с применением мажоритарного элемента
- 9.7. Резервирование элементов, отказывающих по причине обрыва или короткого замыкания
- 9.8. Метод свертки
- 9.9. Логико-вероятностный метод
- 9.10. Оценка надёжности мостиковых структур методом перебора.
- Раздел 10. Расчет надежности ремонтируемых организационно-технических систем
- 10.1. Расчет надежности ремонтируемых организационно-технических систем
- Вычисление функций готовности и простоя нерезервированных систем
- 10.2 Особенности расчёта надёжности резервированных восстанавливаемых систем.
- 10.3. Примеры расчётов надёжности восстанавливаемых систем.
- 10.4 Определение надежности с учетом восстанавливаемости и числа запасных элементов
- Раздел 11. Определение необходимого числа запасных элементов
- 11.1. Оптимальное соотношение между надежностью и стоимостью
- 11.2. Определение гарантированного числа запасных элементов
- 11.3. Оптимальное резервирование
- 11.4. Алгоритмы оптимального резервирования
- 11.5. Применение резервирования в системах наведения и управления летательных аппаратов
- Раздел 12. Испытания организационно-технических систем и их элементов
- 12.1. Планы испытаний
- 12.2 Оценка показателей надежности по результатам испытаний.
- 12.2.1 Испытания на надежность элементов объектов в составе организационно-технических систем
- 12.2.2.Общие методы оценки показателей надёжности по результатам испытаний
- Эмпирическая функция распределения и гистограмма результатов испытаний
- Метод проверки гипотез о законах распределения.
- Графические методы.
- Метод максимального правдоподобия.
- Метод квантилей.
- 12.2.3 Интервальные оценки показателей надёжности.
- Определение доверительного интервала для средней наработки на отказ
- 12.2.4 Контрольные испытания.
- Контроль по методу однократной выборки.
- 12.3 Обеспечение надежности объектов ркт в процессе опытной отработки.
- 12.3.1. Логико-вероятностная модель процесса отработки.
- 12.3.2 Определение числа доработок для обеспечения требуемого значения показателя надежности.
- 12.4 Оптимизация программы испытаний сложных объектов по стоимости
- 12.5 Краткая характеристика жизненного цикла сложных технических объектов.
- 12.6.Изменение надёжности летательного аппарата при его отработке в составе организационно-технической системы
- Раздел 13. Общие вопросы технической диагностики
- 13.1 Основные понятия и определения
- 13.2Поиск и устранение неисправностей (отказов)
- 13.3. Методы поиска неисправностей (отказов) и обуславливающих их дефектов.
- 13.3.1 Условия работоспособности объектов. Контроль работоспособности.
- 13.3.2. Методы обнаружения дефектов
- 13.4 Критерии оптимальности процесса поиска неисправностей
- Алгоритм поиска дефектов
- 13.5. Методы построения алгоритмов поиска дефектов
- 13.6 Поиск неисправных элементов методом групповых проверок
- 13.7. Поиск отказавших элементов на основе чисел Фибаначи и золотой пропорции.
- Раздел 14. Обеспечение надежности систем «человек-машина» в организационно-технических системах
- 14.1 Виды совместимости среды и системы «человек-машина»
- 14.2 Методология исследования систем «человек – машина»
- 14.3 Организация рабочих мест
- 14.4 Выбор положения работающего
- 14.5 Пространственная компоновка рабочего места
- 14.6 Размерные характеристики рабочего места (боевого поста)
- 14.7 Взаимное расположение рабочих мест
- 14.8 Размещение технологической и организационной оснастки
- 14.9 Обзор и наблюдение за технологическим процессом
- Раздел 15. Управление надежностью
- Раздел 16. Информационное обеспечение программ обеспечения надежности
- Заключение
- Библиографический список.