10.1.6. Термическое воздействие сварки на металл, сварочные напряжения и деформации
Процесс сварки плавлением сопровождается нагреванием металла сварочного соединения, который претерпевает структурные и химические изменения. Различают три зоны соединения: зону наплавленного металла, зону термического влияния сварки и зону основного металла. Зоной термического влияния называют прилегающий к шву участок основного металла, в котором происходят структурные фазовые изменения вследствие нагрева до температуры выше 720оС. Глубина этой зоны при ручной сварке приблизительно равна 3…6 мм, при автоматической – 2…4 мм.
Обязательным условием сварки является поддержание температуры расплавленного металла шва (стали) в интервале 1500…1600оС.
Внутренние сварочные напряжения в сварных швах и соединениях возникают в результате линейной усадки наплавленного металла из-за неравномерного нагрева свариваемого металла и изменения объема металла при изменении его структуры. При сварке участки, окружающие место сварки, сопротивляются развитию температурных деформаций, подвергаясь сжатию. Во время затвердевания и последующего охлаждения объем металла шва уменьшается – происходит линейная усадка, но, так как он уже жестко связан с основным металлом, его усадка вызывает появление внутренних напряжений. Чем больше объем наплавленного металла, тем больше внутренние напряжения и деформации.
Величина силы сжатия определяется температурным удлинением при нагреве Δl, равном:
Δl = αlΔt,
где α = 0,000012 оС–1 – коэффициент линейного расширения для стали при t ≈ 20оС;
Δt = t2 – t1 – разность температур до и после нагрева элемента;
l – первоначальная длина элемента.
При сварке встык двух листов стыковым швом за один проход возникают не только продольные, но и поперечные сварочные напряжения и деформации (рис. 10.11). Эпюру продольных напряжений σy можно представить как комбинацию эпюр, получающихся при наплавке шва на кромку каждого листа.
Рис. 10.11. Сварочные напряжения при соединении листов встык:
а – эпюры сварочных напряжений; б – уменьшение сварочных
напряжений обратно-ступенчатой сваркой
Поперечные напряжения σx возникают вследствие неодновременного (последовательного) наложения сварного шва по длине стыка.
Ввиду того, что сварной шов соединяет оба листа по прямой линии, создается препятствие их выгибу (штриховые линии) и возникает эпюра поперечных сварочных напряжений σx.
Для уменьшения поперечных сварочных напряжений может быть применен обратноступенчатый способ сварки, при котором шов накладывается отдельными участками, при чем направление сварки на каждом участке обратно общему направлению наложения шва.
Особенно большие и опасные сварочные напряжения возникают при сварке встык деталей, закрепленных от свободных перемещений в направлении стыка (рис. 10.12). При разогреве в начале сварки детали свободно удлиняются и сближаются между собой. После наложения шва они соединяются в сближенном состоянии. При остывании шов и детали стремятся сократиться, однако концы их закреплены, из-за чего в деталях возникают большие растягивающие напряжения, способные разорвать изделие.
Рис. 10.12. Сварочные напряжения при
стесненной деформации
В соединениях угловыми швами также возникают сварочные напряжения и деформации. В накладываемом листе нахлесточного соединения развиваются однозначные напряжения по краям и разнозначные в середине (рис. 10.13, а). Если лист узкий, т.е. швы находятся на небольшом расстоянии друг от друга, то существенно возрастают поперечные напряжения σx.
В самих швах тоже возникают поперечные усадочные напряжения, поскольку жесткость свариваемых листов препятствует свободному сокращению шва при остывании. Внутренняя часть шва при этом оказывается растянутой, а поверхностный слой, остывающий быстрее, – сжатым (рис. 10.13, б). В многослойном угловом шве (как, впрочем, и стыковом) каждый последующий слой при остывании сжимает предыдущий, отчего усадочные напряжения уменьшаются (рис. 10.13, в).
Влияние сварочных напряжений и деформаций на качество и работу конструкций. Деформации и напряжения, образующиеся при сварке, по-разному влияют на работу конструкций. Это влияние может быть как существенным, так и незначительным, как отрицательным, так и положительным.
Если временные внутренние растягивающие деформации металла шва превышают его пластические свойства при кристаллизации, то образуются недопустимые дефекты типа горячих трещин.
Рис. 10.13. Сварочные напряжения в угловом шве:
а – эпюры сварочных напряжений; б – однослойная сварка;
в – многослойная сварка
Остаточные сварочные деформации, как правило, ухудшают работу конструкций, приводя к отклонениям от проектных размеров. Искажение размеров элементов сварных конструкций затрудняет в некоторых случаях последующую сборку, приводя к дополнительным дорогостоящим операциям по исправлению конструкций. Однако иногда остаточные сварочные деформации могут иметь положительное влияние на работу конструкций. Например, серповидность двутавровой балки можно использовать как начальный строительный подъем.
Укорочение элементов конструкций от сварки требует изготовление деталей и узлов сварных конструкций несколько больших размеров. Величина, на которую увеличиваются размеры конструкции, называется припуском и определяется либо расчетом, либо опытным путем.
Влияние сварочных напряжений на прочность соединения. Многолетний опыт сооружения и эксплуатации стальных сварных конструкций показал, что прочность их при статической и динамической нагрузках в большинстве случаях не зависит от наличия остаточных напряжений. При остаточных напряжениях линейного характера, совпадающих по знаку с напряжениями от нагрузки, может измениться величина усилий, вызывающих местный переход напряжений за пределы текучести и появление пластических деформаций. По достижении в наиболее напряженных точках конструкции предела текучести дальнейший рост напряжений прекратится, так как произойдет перераспределение напряжений на прилежащие зоны металла. Этим обеспечивается высокая прочность сварных соединений.
При плоском однозначном поле сварочных напряжений (например, средняя зона двух листов, сваренных встык, испытывающих растяжение в двух направлениях) они препятствуют развитию пластичности при суммировании сварочных и силовых напряжений и могут вызвать хрупкое разрушение изделия. Их неблагоприятное воздействие усиливается источниками концентрации напряжений вследствие дефектов сварного шва. Особенно опасны сварочные напряжения, появляющиеся при сварке толстых изделий, так как в этом случае распределение остаточных напряжений носит объемный характер, еще более затрудняющий влияние пластичности материла на выравнивание напряжения.
Остаточные сварочные деформации, влияя на геометрическую форму конструкций и их элементов, иногда снижают их несущую способность. Такие деформации, как искривление продольной оси элементов, работающих на сжатие, грибовидность полок балок и колонн, коробление стенок балки и колонны (под действием сжимающих сварочных напряжений возникают в стенке так называемые хлопуны) могут значительно снизить значение критических нагрузок, вызывающих потерю устойчивости конструкции.
Размер остаточных деформаций зависит от технологии сборочно-сварочных работ и конструктивной формы. Последняя может иметь решающее значение, поэтому в процессе конструирования должны быть заранее известны характер ожидаемых деформаций и их ориентировочные размеры.
- Министерство образования и науки рф
- Основные требования, предъявляемые к металлическим конструкциям
- Сравнительная оценка жесткости изгибаемого элемента при различной компоновке сечения (условно стенка в двутавре исключена)
- 1.3. Методика расчета металлических конструкций по предельным состояниям
- Общая характеристика предельных состояний
- Нагрузки и воздействия
- Коэффициенты надежности по нагрузке
- Нормативные и расчетные сопротивления материалов
- Учет условий работы
- Учет ответственности зданий и сооружений
- Коэффициенты условий работы
- 1.3.6. Условия предельных состояний
- Вертикальные предельные прогибы fu элементов конструкций
- 1.4. Организация проектирования
- 1.5. Расчетная схема сооружения (конструкции)
- 1.6. Сортамент
- 1.6.1. Общая характеристика сортамента
- 1.6.2. Сталь листовая
- Сталь листовая
- Сталь профильная
- Сортамент
- 1.6.3. Уголковые профили
- 1.6.4. Швеллеры
- 1.6.5. Двутавры
- 1.6.6. Трубы
- 1.6.7. Вторичные профили
- 1.6.8. Различные профили и материалы, применяемые в строительных металлических конструкциях
- 1.6.9. Профили из алюминиевых сплавов
- Глава 2
- Стали для конструкций зданий и сооружений по гост 27772-88
- Нормируемые характеристики для категорий поставки
- Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе проката по гост 27772-88 для стальных конструкций зданий и сооружений
- Расчетные сопротивления проката смятию торцевой поверхности (при наличии пригонки)
- Расчетные сопротивления сварных соединений
- Нормативные и расчетные сопротивления металла швов сварных соединений
- Глава 3
- 3.1. Балочные клетки
- 3.2. Расчет изгибаемых элементов в упругой стадии и с учетом развития пластических деформаций
- Классы напряженных состояний сечений при изгибе
- 3.3. Расчет плоского стального настила
- Рекомендуемые толщины стального настила
- Значения коэффициентов f и z
- Минимальные катеты сварных швов kmin
- 3.4. Расчет прокатной балки настила
- 3.5. Расчет прокатной балки, работающей на косой изгиб
- Коэффициенты для двутавровых балок с двумя осями симметрии
- 3.6. Расчет и конструирование составной сварной главной балки
- 3.6.1. Определение усилий
- 3.6.2. Компоновка сечения
- Сортамент горячекатаных полос по гост 103-76*
- Стальлистовая горячекатаная (выборка из гост 19903-74*)
- Сталь широкополосная универсальная по (по гост 82-70*)
- 3.6.3. Проверка прочности балки
- Наибольшие значения отношения ширины свеса сжатого пояса bef к толщине tf
- 3.6.4. Изменение сечения балки по длине
- 3.6.5. Проверка общей устойчивости балки
- 3.6.6. Проверка местной устойчивости элементов балки
- Коэффициенты устойчивости при центральном сжатии
- Характеристики кривых устойчивости
- Значения коэффициента ссr в зависимости от значения δ
- Значения коэффициента c1
- Значения коэффициента c2
- Значения коэффициента ccr в зависимости от отношения a/hw
- 3.6.7. Проверка жесткости балки
- 3.6.8. Расчет соединения поясов балки со стенкой
- 3.6.9. Конструирование и расчет опорной части главной балки
- 3.6.10. Проектирование монтажного стыка главной балки
- Площади сечения болтов
- Нормы расстановки болтов в болтовых соединениях
- Коэффициенты трения и надежности h
- Расчет стыка пояса. Раскладывая изгибающий моментMfна пару сил, определяем расчетное усилие в поясе:
- Коэффициенты стыка стенки балок
- Глава 4
- 4.1. Расчет прокатной колонны
- 4.2. Расчет и конструирование сплошной сварной колонны
- Приближенные значения радиусов инерции IX и iy сечений
- Предельные условные гибкости
- 4.3. Расчет и конструирование сквозной колонны
- 4.3.1. Расчет колонны на устойчивость относительно материальной оси X-X
- 4.3.2. Расчет колонны на устойчивость относительно свободной оси y-y
- 4.3.3. Сквозная колонна с планками
- 4.3.4. Сквозная колонна с треугольной решеткой
- 4.4. Конструирование и расчет оголовка колонн
- 4.4.1. Оголовок сплошной колонны
- 4.4.2. Оголовок сквозной колонны
- 4.5. Конструирование и расчет базы колонны
- 4.5.1. Определение размеров опорной плиты в плане
- Расчетные сопротивления бетона Rb
- 4.5.2. Определение толщины опорной плиты
- Коэффициенты 1 для расчета на изгиб плиты, опертой по четырем сторонам
- Коэффициенты для расчета на изгиб плиты, опертой на три канта
- 4.5.3. Расчет траверсы
- 4.5.4. Расчет ребер усиления плиты
- Глава 5
- 5.1. Общая характеристика и классификация ферм
- 5.2. Порядок расчета стропильных ферм
- 5.2.1. Определение нагрузок на ферму
- 5.2.2. Определение усилий в стержнях фермы
- Расчетные усилия в стержнях фермы, кН (форма таблицы)
- 5.2.3. Определение расчетных длин и предельных гибкостей стержней фермы
- Предельные гибкости сжатых элементов
- Предельные гибкости растянутых элементов
- Расчетные длины стержней ферм
- 5.2.4. Выбор типа сечений стержней фермы
- Приближенные значения радиусов сечений элементов из уголков
- Подбор сечений элементов фермы
- Рекомендуемые толщины фасонок
- Коэффициент влияния формы сечения η
- 5.2.6. Расчет и конструирование узлов фермы
- Подбор сечений элементов строительной фермы. Материал – сталь с245,
- Значения коэффициента α
- Максимальные катеты швов kf, max у скруглений прокатных профилей
- 5.2.7. Сопряжение фермы с колонной
- Расчетные сопротивления срезу и растяжению болтов
- 5.3. Расчет и конструирование решетчатого прогона
- Состав покрытия
- Расчетные значения веса снегового покрова на 1 м2 горизонтальной поверхности земли
- Глава 6
- 6.1. Рекомендации по выбору конструктивной и расчетной схемы каркаса
- 6.1.1. Разбивка сетки колонн
- Предельные размеры температурных блоков зданий
- 6.1.2. Компоновка однопролетной рамы производственного здания
- Справочные данные по мостовым кранам нормального режима работы** (для учебного проектирования)
- Основные размеры элементов подкрановых балок
- 6.1.3. Компоновка связей каркаса
- 6.5. Связи покрытия
- Глава 7
- 7.1. Расчетная схема рамы
- 7.2. Определение расхода стали на несущие конструкции каркаса
- Нагрузки от конструкций и элементов покрытия на 1 м2 площади
- 7.2.1. Прогоны
- Нагрузки на прогон от веса ограждающих конструкций покрытия
- Расход стали на прогоны
- 7.2.2. Стропильные фермы
- 2. Треугольная ферма.
- 7.2.3. Подстропильные фермы
- 7.2.4. Подкрановые балки
- 7.2.5. Колонны каркаса
- 7.3. Нагрузки, действующие на поперечную раму
- 7.3.1. Постоянные нагрузки
- 7.3.2. Снеговая нагрузка
- 7.3.3. Нагрузки от мостовых кранов
- 7.3.4. Ветровая нагрузка
- Нормативные значения ветрового давления wo
- Коэффициенты k для типов местности
- 7.4. Назначение жесткостей элементов рамы
- 7.4.1. Определение жесткости сквозного ригеля
- 7.4.2. Определение жесткостей ступенчатой колонны
- Расчетные усилия в левой колонне раздельно по каждому виду загружения, кН, кН·м
- 7.5. Статический расчет поперечной рамы
- 7.5.1. Определение расчетных усилий в колонне
- 7.5.2. Определение расчетных сочетаний усилий
- Расчетные усилия при невыгодных сочетаниях нагрузок
- 7.5.3. Выбор расчетных комбинаций усилий для подбора сечений верхней и нижней частей колонны
- Глава 8
- 8.1. Общие требования при проектировании конструкций
- 8.2. Исходные данные для расчета колонны
- 8.3. Компоновка сечения и расчет надкрановой части колонны
- 8.3.1. Определение расчетных длин надкрановой части колонны
- Коэффициенты расчетной длины 1 и 2 для одноступенчатых колонн рам одноэтажных промышленных зданий
- 8.3.2. Подбор сечения колонны
- 8.3.3. Проверка устойчивости надкрановой части колонны
- Коэффициенты φe для проверки устойчивости внецентренно-сжатых сплошностенчатых стержней в плоскости действия момента
- Коэффициенты φe для проверки устойчивости внецентренно-сжатых сквозных стержней в плоскости действия момента
- Значения коэффициентов α и β
- 8.3.4. Проверка местной устойчивости элементов сплошной колонны
- 8.4. Компоновка сечения и расчет подкрановой части колонны
- 8.4.1. Определение расчетных длин подкрановой части колонны
- 8.4.2. Подбор сечения ветвей колонны
- 8.4.3. Проверка устойчивости подкрановой части колонны
- 8.5. Конструирование и расчет базы внецентренно-сжатой колонны
- 8.5.1. Общие требования к базам колонн
- 8.5.2. Определение размеров опорной плиты в плане
- 8.5.3. Определение толщины опорной плиты
- 8.5.4. Расчет траверсы
- 8.5.5. Расчет анкерных болтов и пластин
- Расчетные сопротивления растяжению фундаментных болтов Rba
- Предельные усилия на растяжение одного фундаментного болта Fnр
- 8.5.6. Особенности расчета общей базы внецентренно-сжатой колонны
- 8.5.7. Расчет соединения надкрановой и подкрановой частей колонны
- 8.5.8. Прикрепление подкрановой консоли к колонне
- Глава 9
- 9.1. Особенности работы подкрановых балок
- 9.2. Определение расчетных сил и усилий
- Продолжение рис. 9.1
- Расчетное значение поперечной силы от вертикальной нагрузки
- 9.3. Подбор сечения балки
- Практические значения kw
- Опорные реакции:
- Расчетное значение нормативного изгибающего момента
- 9.4. Проверка прочности и устойчивости балки
- Характеристики подкранового рельса по гост 4121-76*
- 9.5. Расчет соединения поясов подкрановой балки со стенкой
- Формулы для расчета поясных соединений в составных балках
- Глава 10
- Введение
- 10.1. Сварные соединения
- 10.1.1. Сущность сварки
- 10.1.2. Способы сварки металлических конструкций
- 10.1.3. Ручная дуговая сварка плавящимся электродом
- Размеры электродов
- Диаметры электродов
- 10.1.4. Автоматическая сварка под слоем флюса
- 10.1.5. Механизированная сварка в среде углекислого газа
- Технические характеристики полуавтомата пдг-516 с вду-506
- Параметры режима двусторонней механизированной сварки
- 10.1.6. Термическое воздействие сварки на металл, сварочные напряжения и деформации
- 10.1.7. Мероприятия по уменьшению остаточных сварочных напряжений и деформаций
- 10.1.8. Основные дефекты сварных соединений
- 10.1.9. Дефекты в сварных швах
- 10.1.10. Классификация сварочных дефектов
- Характерные дефекты и повреждения сварных соединений
- Дефекты в сварных соединениях и причины их возникновения
- 10.1.11. Контроль качества сварных швов и соединений
- 10.1.12. Техника безопасности при электродуговых способах сварки
- 10.1.13. Виды сварных соединений
- Виды сварных соединений
- Допустимая наибольшая разность толщин деталей, свариваемых встык без скоса кромок
- 10.1.14. Классификация сварных швов
- Минимальные катеты cварных швов
- Виды стыковых швов в элементах стальных конструкций
- 10.1.15. Расчет и конструирование сварных соединений
- 10.1.15.1. Стыковые соединения
- 10.1.15.2. Нахлесточные соединения
- Значения коэффициентов f и z
- Максимальные катеты швов kf, max у скруглений прокатных профилей
- 10.1.15.3. Комбинированные соединения
- 10.1.15.4. Тавровые соединения
- 10.1.15.5. Прикрепление угловыми швами несимметричных профилей
- Значения коэффициента α
- 10.1.15.6. Проектирование монтажного стыка сварной балки
- 10.1.15.7. Расчет сварного соединения на одновременное действие изгибающего момента м и перерезывающей силы q
- 10.2. Болтовые соединения
- Диаметры отверстий болтов
- 10.2.1. Размещение болтов в соединении
- Размещение болтов
- 10.2.2. Срезные соединения на болтах нормальной точности
- Расчетные сопротивления срезу и растяжению болтов
- Расчетные сопротивления смятию Rвр элементов, соединяемых болтами
- Площади сечения болтов согласно ст сэв 180-75,
- Коэффициенты условий работы соединения
- 10.2.3. Фрикционные соединения на высокопрочных болтах
- Механические свойства высокопрочных болтов по гост 22356 – 77*
- Коэффициенты трения и надежности h
- 2.4. Монтажный стык балки на высокопрочных болтах
- Коэффициенты стыка стенки балок
- Приложение 1
- Исходные данные для статического расчета рамы по программе «Рама-1» (жесткое сопряжение ригеля с колоннами)
- Приложение 2
- Результаты статического расчета поперечной рамы одноэтажного однопролетного производственного здания
- Обозначения: Мл, Nл, Qл – усилия в левой колонне; Мп, Nп, Qп – усилия в правой колонне. Приложение 3
- Исходные данные для статического расчета рамы по программе «Рама-2» (вариант – шарнирное сопряжение ригеля с колоннами)
- Приложение 4
- 9.3. Подбор сечения балки . . . . . . 286
- Металлические конструкции