§ 1. Общие сведения
Подшипники качения являются основным видом опор вращающихся (качающихся) деталей. Подшипник качения имеет наружное1 и внутреннее 2 кольца, между которыми расположены тела качения 3 (рис. 27.1). Во избежание соприкосновения тел качения они отделяются друг от друга сепаратором 4.
Классификация подшипников. Подшипники качения классифицируют по следующим признакам:
1. По форме тел качения подшипники подразделяют на шариковые (рис. 27.2) и роликовые (рис. 27.3). Последние, в свою очередь, делят по форме роликов на подшипники с короткими (рис. 27.3, а) и длинными (рис. 27.3,0) цилиндрическими роликами, с коническими (рис. 27.3, г), бочкообразными {рис. 27.3,6), ИГОЛЬ-
Рис. 27.1. Подшипник качения
α) δ) в) г)
Рис. 27.2. Основные типы шарикоподшипников
чатыми (рис. 27.3, в) и витыми роликами (рис. 27.3, е).
2. По направлению воспринимаемых сил подшипники разделяют на типы:
а) радиальные, воспринимающие преимущественно радиаль ные нагрузки, действующие перпендикулярно оси вращения подшипника (рис. 27.2, α и б и 27.3, а, 6, в, д);
б) радиально-упорные, предназначенные для восприятия одновременно действующих радиальных и осевых нагрузок (рис. 27.2, виги 27.3, г);
в) упорно-радиальные, предназначенные для восприятия осе вой нагрузки при одновременном действии незначительной радиальной нагрузки (рис. 27.2, д);
г) упорные, воспринимающие только осевые силы (рис.
27.2, е).
По способности самоустанавливаться подшипники под разделяют на несамоустанавливающиеся и самоустанавливаю щиеся (см. рис. 27.2,6 и 27.3,6), допускающие поворот оси внутреннего кольца по отношению к оси наружного кольца.
По числу рядов тел качения (расположенных по ширине) подшипники делят на однорядные (см. рис. 27.2, а, в - е и 27.3, а, в - д), двухрядные (см. рис. 27.2, б и 27.3,6) и четырехрядные.
Подшипники одного и того же диаметра отверстия подразделяют по габаритным размерам (наружный диаметр и ши-
Рис. 27.3. Основные типы роликоподшипников
рина) на размерные серии: сверхлегкую, особо легкую, легкую, среднюю, тяжелую, особо узкую, узкую, нормальную, широкую и особо широкую.
Подшипники разных типов, размеров и серий имеют различную грузоподъемность и быстроходность. Подшипники более тяжелых серий менее быстроходны, но имеют более высокую грузоподъемность. Подшипники шариковые радиальные и радиально-упорные, а также роликовые с короткими цилиндрическими роликами имеют наибольшую быстроходность по сравнению с подшипниками других типов.
Для особо высокой частоты вращения и действия легких нагрузок целесообразно использовать подшипники сверхлегкой и особо легкой серий. Для восприятия повышенных и тяжелых нагрузок при высокой частоте вращения используют подшипники легкой серии, а при недостаточной их грузоподъемности размещают в одной опоре по два подшипника.
Наиболее часто на практике применяют подшипники легкой и средней серий нормальной ширины.
Радиальные шарикоподшипники могут воспринимать как радиальные, так и осевые нагрузки, действующие в обе стороны вдоль оси вращения подшипника, что обеспечивает возможность фиксирования вала в осевом направлении. При использовании этих подшипников предъявляются менее высокие требования к соосности опор и жесткости валов; стоимость их изготовления невысока, наиболее прост монтаж и демонтаж, поэтому такие подшипники наиболее распространены.
Роликовые подшипники более грузоподъемны, чем шариковые. Однако роликоподшипники с цилиндрическими роликами наиболее распространенных конструкций (с направляющими бортами для роликов на одном из колец подшипника) не могут воспринимать осевых нагрузок, а конические роликоподшипники менее быстроходны. Все большее применение находят роликоподшипники с выпуклой образующей роликов (с бомбированными роликами). Такая форма роликов позволяет снизить концентрацию напряжений на их кромках и повысить долговечность подшипников в 2 раза и более.
Радиально-упорные подшипники различают по величине угла контакта α (см. рис. 27.2, в, г и 27.3, г). С увеличением угла контакта радиально-упорные подшипники могут воспринимать более тяжелые осевые нагрузки. Однако быстроходность подшипников с увеличением угла контакта снижается.
Радиальные и радиально-упорные шарикоподшипники могут быть использованы и в случае действия на них только осевой нагрузки, особенно при высокой частоте вращения, при которой нельзя применять упорные подшипники. Самоустанавливающиеся подшипники применяют в случае повышенной несоосности опор вала (до 2 — 3°), а также при повышенной изгибной податливости вала.
Предельная частота вращения подшипников зависит от их конструкции и точности изготовления, от точности изготовления и монтажа сопряженных с подшипниками деталей, а также от способа смазывания и свойств смазочных материалов.
Точность изготовления. Промышленность изготовляет подшипники качения пяти классов точности (0, 6, 5, 4 и 2; обозначения даны в порядке повышения точности).
Подшипники класса точности 0 используют при отсутствии особых требований к точности вращения, определяемой радиальными и осевыми биениями дорожек качения внутреннего и наружного колец подшипника. Их применяют наиболее часто.
Быстроходность подшипников принято оценивать параметром dmn, где dm — диаметр окружности, соединяющей центры тел качения, мм; η — частота вращения кольца подшипника, об/мин. Для радиальных и радиально-упорных шарикоподшипников со стальными штампованными («змейковыми») сепараторами (см. рис. 27.1) и роликоподшипников с короткими цилиндрическими роликами нормального класса точности (0)dmn = 0,5· 106 мм-об/мин; для тех же подшипников с массивными сепараторами, изготовленными из антифрикционных материалов (бронзы, алюминиевых сплавов, пластмасс), при интенсивной циркуляционной подаче масла параметр dmn достигает 2,8 · 106 мм-об/мин; для конических роликоподшипников dmn к 0,3 · 106 мм · об/мин, а для упорных шарикоподшипников dmn « 0,22 · 10б мм · об/мин.
Для шарикоподшипников небольших размеров при смазывании масляным туманом (см. с. 466) достигали значения параметра dmn = 1,8 · 106 м · об/мин, при этом частота вращения подшипника была 90000—100000 об/мин и ресурс составил более 2000 ч.
Материалы деталей подшипников. Кольца и тела качения подшипников изготовляют в основном из шарикоподшипниковых высокоуглеродистых хромистых сталей ШХ15 и ШХ15СГ, а также цементуемых легированных сталей 18ХГТ, 20Х2Н4А и 20НМ. Твердость роликов и колец обычно HRC 60— 65, шариков - HRC 62 — 66.
Кольца и тела качения подшипников, работающих в агрессивных средах, выполняют из сталей 12X13 или 20X13.
Сепараторы массовых подшипников изготовляют штамповкой из мягкой углеродистой стали; сепараторы высокоскоростных подшипников выполняют массивными из бронз, латуни, дуралюмина, текстолита и других материалов.
Основные типы подшипников и их характеристики приведены в работе [4].
- Часть 1. Основы расчета
- Глава 1
- § 1 Общие сведения о деталях и узлах машин и основные требования к ним
- § 2. Прочностная надежность деталей машин (методы оценки)
- § 3. Износостойкость деталей машин
- § 4. Жесткость деталей машин
- § 5. Стадии конструирования машин
- Глава 2
- § 1. Машиностроительные материалы
- § 2. Точность изготовления деталей
- Часть 2. Передаточные механизмы
- Глава 3
- § 1. Ремни и шкивы
- § 2. Усилия и напряжения в ремне
- § 3. Кинематика и геометрия передач
- § 4. Тяговая способность и кпд передач
- § 5. Расчет и проектирование передач
- § 6. Передачи зубчатыми ремнями
- Глава 4
- § 1. Виды механизмов и их назначение
- § 2. Кинематика и кпд передач
- § 3. Расчет передач
- § 1. Общие сведения
- § 2. Кинематика зубчатых передач
- § 3. Элементы теории зацепления передач
- 11 Г. Б. Иосилевич и др.
- § 5. Геометрический расчет эвольвентных прямозубых передач
- § 6. Особенности геометрии косозубых и шевронных колес
- § 7. Особенности геометрии конических колес
- § 8. Передачи с зацеплением новикова
- § 9. Усилия в зацеплении
- § 10. Расчетные нагрузки
- § 11. Виды повреждений передач
- § 12. Расчет зубьев на прочность при изгибе
- § 13. Расчет на контактную прочность активных поверхностей зубьев
- § 14. Материалы, термообработка и допускаемые напряжения для зубчатых колес
- § 15. Особенности расчета и проектирования планетарных передач
- § 16. Конструкции зубчатых колес
- Глава 21 гиперболоидные передачи
- § 1. Общие сведения
- § 2. Геометрический расчет передачи
- § 3. Кинематика и кпд передачи.
- § 4. Расчет на прочность червячных передач
- § 5. Материалы, допускаемые напряжения и конструкции деталей передачи
- Глава 22
- § 1. Общие сведения
- § 2. Кинематические характеристики и кпд передачи
- § 3. Расчет несущей способности элементов передачи
- Глава 23
- § 1. Цепи и звездочки
- § 2. Кинематика и быстроходность передач
- § 3. Усилия в передаче
- § 4. Расчет цепных передач
- § 5. Особенности конструирования и эксплуатации передач
- Часть 3. Валы, муфты, опоры и корпуса
- Глава 24
- § 1. Общие сведения
- § 2. Конструкции и материалы валов и осей
- § 3. Расчет прямых валов на прочность и жесткость
- § 4. Подбор гибких валов
- § 1. Общие сведения
- § 2. Нерасцепляемые муфты
- § 3. Сцепные управляемые
- Глава 26
- § 1. Общие сведения
- § 2. Особенности работы подшипников
- § 3. Конструкции и виды повреждений подшипников
- § 4. Нагрузочная способность подшипников скольжения
- Глава 27 подшипники качения
- § 1. Общие сведения
- § 2. Кинематика и динамика подшипников
- 1'Нс. 27.4. План скоростей в Рис. 27.5. Контактные напряжения и план скоростей в радиально-упорном подшипнике
- § 3. Несущая способность подшипников
- § 4. Выбор подшипников
- § 5. Конструкции подшипниковых узлов
- Детали корпусов, уплотнения, смазочные материалы и устройства
- § 1. Детали корпусов
- § 2. Уплотнения и устройства для уплотнения
- I'm. 28.2. Конструктивные формы прокладок:
- § 3. Смазочные материалы и устройства
- Часть 4. Соединения деталей (узлов) машин и упругие элементы
- § I. Сварные соединения
- § 2. Проектирование и расчет соединений при постоянных нагрузках
- § 3. Расчет на прочность сварных соединений при переменных нагрузках
- § 4. Паяные соединения
- § 5. Клеевые соединения
- Глава 30 заклепочные соединения
- § 1. Общие сведения
- § 2. Расчет соединений при симметричном нагружении
- § 3. Расчет соединений
- Глава 31
- § 1. Общие сведения
- § 2. Расчет соединений
- Глава 32
- § 1. Общие сведения
- § 2. Особенности работы резьбовых соединений
- § 3. Виды разрушений и основные расчетные случаи
- § 4. Особенности расчета групповых (многоболтовых) соединений
- Глава 33
- § 1. Шпоночные соединения
- § 2, Шлицевые соединения
- § 3. Профильные соединения
- § 4. Штифтовые соединения
- Глава 34
- § 2. Расчет витых цилиндрических пружин сжатия и растяжения
- § 3. Резиновые упругие элементы
- Глава 35
- § 1. Общие сведения
- § 2. Общие принципы построения систем автоматизированного проектирования
- § 3. Структура математической модели
- § 4. Цели и методы оптимизации
- Глава 36
- § 1. Расчет вала минимальной массы
- § 2. Расчет многоступенчатого редуктора минимальных размеров