§ 1. Шпоночные соединения
Общие сведения. Соединение двух соосных цилиндрических деталей (вала и ступицы) для передачи вращения между ними осуществляется с помощью шпонки — специальной детали, закладываемой в пазы соединяемых деталей (рис. 33.1). Иногда шпонки используют в качестве направляющих для осевого перемещения ступицы по валу (направляющие шпонки).
В машиностроении применяют ненапряженные соединения (с помощью призматических и сегментных шпонок, рис. 33.1, а, б) и напряженные соединения (с помощью клиновых шпонок, рис. 33.1, в). Шпонки этих типов стандартизованы, их размеры выбирают по ГОСТ 23360—78, ГОСТ 24071-80 и ГОСТ 24068-80.
Простота конструкции, невысокая стоимость изготовления, удобство сборки и разборки обеспечивают широкое использование соединений во всех отраслях машиностроения.
Однако отсутствие взаимозаменяемости и, как следствие, необходимость ручной пригонки или подбора ограничивают использование соединений в машинах крупносерийного и массового производства. Не рекомендуется применение соединений для быстровращающихся валов ответственного назначения из-за сложности обеспечения концентричной посадки сопрягаемых деталей. Эти два недостатка соединений являются основными. Широко применяются соединения с призматическими шпонками. Такие соединения в сравнении с напряженными более технологичны (легкий монтаж и демонтаж) и обеспечивают лучшее центрирование деталей. Во многих случаях соединение деталей осуществляют с натягом.
Призматические шпонки имеют прямоугольное сечение с отношением высоты к ширине от h/b = 1 (для валов диаметром до 22 мм) до h/b = 0,5 (для валов больших диаметров). Рабочими у призматических шпонок являются боковые узкие грани. В радиальном направлении предусмотрен зазор. В ответственных соединениях сопряжение дна паза с боковыми сторонами выполняют по радиусу для снижения концентрации напряжений. Материал шпонок — чистотянутая сталь с пределом прочности σв ≥ 600 МПа.
Расчет соединений. Основным для соединений с призматическими шпонками является условный расчет на смятие (упру-гопластическое сжатие в зоне контакта).
Если принять для упрощения, что давления в зоне контакта распределены равномерно (см. рис. 33.1, а), и плечо главного вектора давлений равно 0,5d (где d — диаметр вала), то напряжения смятия на боковых гранях (пазах) шпонки
(33.1)
где Т— вращающий момент; lр — рабочая длина шпонки (см. рис. 33.1, a); t2 = 0,4h — глубина врезания шпонки в ступицу; [σсм] - допускаемое напряжение на смятие.
На практике сечение шпонки подбирают по ГОСТ 23360—78 в зависимости от диаметра вала, а длину l шпонки назначают на 5... 10 мм меньше длины ступицы. Затем по формуле (33.1) оценивают прочность соединения на смятие или вычисляют предельный момент, соответствующий [σсм ].
Рабочая длина шпонки lр = l - b может быть вычислена из очевидного соотношения
Проверку прочности шпонок на срез обычно не производят, так как это условие удовлетворяется при использовании стандартных сечений шпонок и рекомендуемых значения [σсм].
Если условие прочности (33.1) не выполняется, то соединение образуют с помощью двух шпонок, установленных под углом 120 или 180°.
Сегментные шпонки имеют более глубокую посадку и не перекашиваются под нагрузкой, они взаимозаменяемы. Однако глубокий паз существенно ослабляет вал, поэтому сегментные шпонки используют преимущественно для закрепления деталей на мал онагру женных участках вала (например, на входных или выходных хвостовиках валов).
Расчет соединений с сегментными шпонками также производят по формуле (33.1), принимая t2 = h – t1 (см. рис. 33.1,6). Допускаемые напряжения на смятие при постоянной нагрузке в соединении стального вала и шпонки из чистотянутой стали с σв = 500 /600 МПа в зависимости от материала ступицы можно выбирать следующими:
Материал ступицы Сталь Чугун, алюминий Текстолит,
древопластик [σсм], МПа .... 150-180 80-100 15-25
Большие значения принимают при легком режиме работы (переменная нагрузка не свыше 5% от постоянной), а меньшие при тяжелых условиях эксплуатации (нагрузка знакопеременная с ударами).
При реверсивной нагрузке допускаемые напряжения уменьшают в 1,5 раза, а при ударной нагрузке — в 2 раза,
- Часть 1. Основы расчета
- Глава 1
- § 1 Общие сведения о деталях и узлах машин и основные требования к ним
- § 2. Прочностная надежность деталей машин (методы оценки)
- § 3. Износостойкость деталей машин
- § 4. Жесткость деталей машин
- § 5. Стадии конструирования машин
- Глава 2
- § 1. Машиностроительные материалы
- § 2. Точность изготовления деталей
- Часть 2. Передаточные механизмы
- Глава 3
- § 1. Ремни и шкивы
- § 2. Усилия и напряжения в ремне
- § 3. Кинематика и геометрия передач
- § 4. Тяговая способность и кпд передач
- § 5. Расчет и проектирование передач
- § 6. Передачи зубчатыми ремнями
- Глава 4
- § 1. Виды механизмов и их назначение
- § 2. Кинематика и кпд передач
- § 3. Расчет передач
- § 1. Общие сведения
- § 2. Кинематика зубчатых передач
- § 3. Элементы теории зацепления передач
- 11 Г. Б. Иосилевич и др.
- § 5. Геометрический расчет эвольвентных прямозубых передач
- § 6. Особенности геометрии косозубых и шевронных колес
- § 7. Особенности геометрии конических колес
- § 8. Передачи с зацеплением новикова
- § 9. Усилия в зацеплении
- § 10. Расчетные нагрузки
- § 11. Виды повреждений передач
- § 12. Расчет зубьев на прочность при изгибе
- § 13. Расчет на контактную прочность активных поверхностей зубьев
- § 14. Материалы, термообработка и допускаемые напряжения для зубчатых колес
- § 15. Особенности расчета и проектирования планетарных передач
- § 16. Конструкции зубчатых колес
- Глава 21 гиперболоидные передачи
- § 1. Общие сведения
- § 2. Геометрический расчет передачи
- § 3. Кинематика и кпд передачи.
- § 4. Расчет на прочность червячных передач
- § 5. Материалы, допускаемые напряжения и конструкции деталей передачи
- Глава 22
- § 1. Общие сведения
- § 2. Кинематические характеристики и кпд передачи
- § 3. Расчет несущей способности элементов передачи
- Глава 23
- § 1. Цепи и звездочки
- § 2. Кинематика и быстроходность передач
- § 3. Усилия в передаче
- § 4. Расчет цепных передач
- § 5. Особенности конструирования и эксплуатации передач
- Часть 3. Валы, муфты, опоры и корпуса
- Глава 24
- § 1. Общие сведения
- § 2. Конструкции и материалы валов и осей
- § 3. Расчет прямых валов на прочность и жесткость
- § 4. Подбор гибких валов
- § 1. Общие сведения
- § 2. Нерасцепляемые муфты
- § 3. Сцепные управляемые
- Глава 26
- § 1. Общие сведения
- § 2. Особенности работы подшипников
- § 3. Конструкции и виды повреждений подшипников
- § 4. Нагрузочная способность подшипников скольжения
- Глава 27 подшипники качения
- § 1. Общие сведения
- § 2. Кинематика и динамика подшипников
- 1'Нс. 27.4. План скоростей в Рис. 27.5. Контактные напряжения и план скоростей в радиально-упорном подшипнике
- § 3. Несущая способность подшипников
- § 4. Выбор подшипников
- § 5. Конструкции подшипниковых узлов
- Детали корпусов, уплотнения, смазочные материалы и устройства
- § 1. Детали корпусов
- § 2. Уплотнения и устройства для уплотнения
- I'm. 28.2. Конструктивные формы прокладок:
- § 3. Смазочные материалы и устройства
- Часть 4. Соединения деталей (узлов) машин и упругие элементы
- § I. Сварные соединения
- § 2. Проектирование и расчет соединений при постоянных нагрузках
- § 3. Расчет на прочность сварных соединений при переменных нагрузках
- § 4. Паяные соединения
- § 5. Клеевые соединения
- Глава 30 заклепочные соединения
- § 1. Общие сведения
- § 2. Расчет соединений при симметричном нагружении
- § 3. Расчет соединений
- Глава 31
- § 1. Общие сведения
- § 2. Расчет соединений
- Глава 32
- § 1. Общие сведения
- § 2. Особенности работы резьбовых соединений
- § 3. Виды разрушений и основные расчетные случаи
- § 4. Особенности расчета групповых (многоболтовых) соединений
- Глава 33
- § 1. Шпоночные соединения
- § 2, Шлицевые соединения
- § 3. Профильные соединения
- § 4. Штифтовые соединения
- Глава 34
- § 2. Расчет витых цилиндрических пружин сжатия и растяжения
- § 3. Резиновые упругие элементы
- Глава 35
- § 1. Общие сведения
- § 2. Общие принципы построения систем автоматизированного проектирования
- § 3. Структура математической модели
- § 4. Цели и методы оптимизации
- Глава 36
- § 1. Расчет вала минимальной массы
- § 2. Расчет многоступенчатого редуктора минимальных размеров