5.8.1. Центробежные насосы
В центробежных насосах перекачивание жидкости осуществляется за счет действия на жидкость центробежной силы, сообщаемой жидкости лопастями вращающегося рабочего колеса.
Основными узлами центробежных насосов являются рабочие колеса, корпуса, в которых эти колеса вращаются, и устройства для подвода и отвода жидкости. Рабочие колеса имеют лопасти и установлены на валах, которые вращаются приводным двигателем.
Жидкость подводится в полости между лопастями и дисками рабочего колеса и получает вращательное движение. Под действием центробежной силы жидкость направляется к внешней окружности рабочего колеса и выталкивается за его пределы. Такое движение жидкости является непрерывным и равномерным процессом.
К достоинствам центробежных насосов относятся простота устройства, небольшое количество частей, высокая надежность, возможность получения больших подач в широком диапазоне необходимых давлений. Благодаря этому насосы такого типа получили очень широкое распространение на судах в качестве питательных, конденсатных, циркуляционных, противопожарных, трюмно-осушительных и балластных.
На рис. 63 представлена схема одноступенчатого консольного центробежного насоса с односторонним подводом жидкости при всасывании.
Рис. 63. Схема центробежного насоса:
1 – подвод жидкости, 2 – рабочее колесо, 3 – спиральный отвод жидкости, 4 – нагнетательный патрубок
Проточная часть насоса образована подводом 1, рабочим колесом 2 и отводом 3. Жидкость поступает по подводу из всасывающего трубопровода в рабочее колесо, заполняя пространство между лопастями «б» с шириной на входе «в1» и на выходе «в2».
Лопасти “б” обычно отлиты заодно с задним несущим и передним ведомым дисками. Форма и кривизна лопастей существенно влияют на напор и подачу насоса. Рабочее колесо, благодаря воздействию лопастей на жидкость, вращает поток и сообщает ему необходимую энергию. Жидкость движется от центрального всасывающего отверстия диска к периферии и по спиральному отводу 3 направляется к нагнетательному патрубку 4.
При входе жидкости на лопасти рабочего колеса скорости потока и давления распределены неравномерно. Неодинаковы давления у передней и тыльной сторон лопасти, при этом давление с тыльной стороны заметно ниже. Если давление понизится до давления парообразования при данной температуре, то в межлопастном пространстве, в зонах пониженного давления образуются пузырьки пара. При дальнейшем движении потока вдоль лопастей давление повышается, пар мгновенно конденсируется и жидкость устремляется в освободившееся при конденсации пространство. В результате возникает ударное давление, оказывающее разрушающее воздействие на лопасти. Это явление называется кавитацией.
Кавитация сопровождается шумом и треском внутри насоса и может вызвать вибрацию насосной установки.
Для длительной безаварийной эксплуатации насоса необходимо создать условия исключающие кавитацию. В этой связи значение удельной энергии жидкости при входе потока на рабочее колесо должно обеспечить создание заданной скорости входа, преодоление потерь при входе и избыток напора превышающий тот, при котором начинается кипение.
Исходя из этого определяется высота установки насоса над уровнем всасываемой жидкости – максимально допустимая геометрическая высота всасывания:
Z = [(pа – pn)/ρg] – hl – φΔh
где: pа – давление на поверхности жидкости в приемном резервуаре,
pn – давление парообразования при эксплуатационной температуре,
ρ – плотность перекачиваемой жидкости,
g – ускорение свободного падения,
hl – гидравлические потери во всасывающем трубопроводе,
φ = 1.2 – 1.3 коэффициент запаса, предупреждающий возможность вскипания жидкости,
Δh – минимальный избыточный напор.
На рис. 64 показано устройство одноступенчатого центробежного насоса с двусторонним подводом воды.
Рис. 64. Одноступенчатый центробежный насос с двусторонним подводом:
1 – рабочее колесо, 2 – корпус, 3 – уплотняющее кольцо, 4 – вал, 5 – опорные подшипники, 6, 7 – соединительные полумуфты, 8 – уплотнения, 9 – корпус, 10– колесо водокольцевого насоса, 11– вал, 12 – упорный подшипник
Рабочее колесо 1 посажено на вал 4 и располагается в литом корпусе насоса 2. Уплотняющее кольцо 3 уменьшает возможность перетекания жидкости из отводящей в приемные полости. Опорные подшипники 5 удерживают вал от осевых сдвигов. Уплотнения 8 служат для устранения подсоса воздуха. В нижней части насоса, в корпусе 9, находится самовсасывающий водокольцевой насос с лопаточным колесом 10, сидящим на валу 11, укрепленном в упорном подшипнике 12. Вспомогательный водокольцевой насос обеспечивает создание вакуума во всасывающем трубопроводе при пуске основного центробежного насоса. Его использование необходимо в случае, если насос установлен выше уровня жидкости в приемном резервуаре.
При эксплуатации центробежных насосов следует выполнять ряд общих требований:
перед пуском насоса производится его осмотр, проверяется заправка и исправность системы смазки, проверяется отсутствие осевого сдвига рабочего колеса, при возможности вручную проворачивается вал насоса;
перед пуском производится заливка всасывающего трубопровода и рабочего колеса с выпуском воздуха через воздушные краны;
насос запускается при закрытом клинкете (вентиле) на нагнетательном трубопроводе;
после пуска, при достижении нормальной частоты вращения и давления нагнетания, медленно открывается клинкет на нагнетательном трубопроводе. Длительная работа при закрытом клинкете приводит к перегреву насоса.
Во время работы насоса осуществляется периодический контроль за работой смазочных устройств, показаний мановакууметрических приборов, частоты вращения вала, поступлением жидкости в уплотняющие устройства, если это предусмотрено.
- И.А. Бурмака, а.В. Кирис, н.А. Козьминых Судовые энергетические установки и электрооборудование судов
- Оглавление
- 4. Судовые паровые и газовые турбины 60
- 5. Судовые вспомогательные установки и механизмы 64
- 6. Судовые системы, передачи и валопровод 115
- 7. Судовое электрооборудование 131
- Список литературы 138
- Введение
- 1. Теоретические основы работы тепловых двигателей
- 1.1. Преобразование энергии в тепловых двигателях. Рабочее тело
- 1.2. Законы термодинамики
- 1.3. Параметры и процессы изменения состояния рабочего тела
- 1.4. Циклы двигателей внутреннего сгорания
- 1.5. Цикл Карно. Анализ влияния характеристик циклов двс на их кпд
- 1.6. Схема работы и цикл простейшей газотурбинной установки (гту)
- 1.7. Схема работы и цикл трехступенчатого компрессора
- 1.8. Парообразование в судовых котлах
- 1.9. Схема работы и цикл и простейшей паротурбинной установки
- 1.10. Основные понятия теплопередачи
- 2. Судовое пароэнергетическое оборудование
- 2.1. Классификация и показатели работы котельных установок
- 2.2. Газотрубные котлы
- 2.3. Принцип работы водотрубного котла
- 2.4. Вертикальный водотрубный парогенератор с естественной циркуляцией
- 2.5. Вспомогательные водотрубные котлы с принудительной циркуляцией
- 2.6. Водный режим паровых котлов
- 2.7. Топливо и его свойства
- 2.8. Топочные устройства
- 2.9. Тягодутьевые устройства
- 3. Судовые двигатели внутреннего сгорания
- 3.1. Устройство двигателя внутреннего сгорания (двс)
- 3.2. Классификация и маркировка двс
- 3.3. Принцип действия четырехтактных двс
- 3.4. Газораспределение четырехтактных дизелей
- 3.5. Принцип действия двухтактных дизелей
- 3.6. Индикаторные показатели работы двс
- 3.7. Эффективные показатели двс
- 3.8. Сравнение двух– и четырехтактных дизелей
- 3.9. Пути повышения мощности двс
- 3.10. Наддув дизелей
- 3.11. Газораспределение и продувка двухтактных дизелей
- 3.12. Образование горючей смеси в дизелях
- 3.13. Утилизация теплоты на морских судах
- 4. Судовые паровые и газовые турбины
- 4.1. Принцип действия паровых турбин
- 4.2. Активные и реактивные паровые турбины
- 4.3. Многоступенчатые турбины
- 4.4. Газовые турбины
- 5. Судовые вспомогательные установки и механизмы
- 5.1. Назначение и классификация теплообменных аппаратов
- 5.2. Основы расчета теплообменных аппаратов
- 5.3. Конструкции теплообменных аппаратов
- 5.4. Назначение и классификация судовых холодильных установок
- 5.5. Схемы работы судовых холодильных установок Одноступенчатая холодильная установка
- Холодильные установки судов для перевозки сжиженных газов
- Конструкции элементов холодильной установки
- 5.6. Общие сведения о судовых насосах и их классификация
- 5.7. Насосы объемного принципа действия
- 5.7.1. Поршневые насосы
- 5.7.2. Роторные насосы
- 5.8. Насосы гидродинамического действия
- 5.8.1. Центробежные насосы
- 5.8.2. Осевые насосы
- 5.8.3. Струйные насосы
- 5.9. Судовые палубные механизмы и устройства
- 5.9.1. Якорные и швартовные устройства
- 5.9.2. Грузовые устройства и люковые закрытия
- 5.10. Судовые рулевые машины
- 5.10.1. Назначение рулевых машин и требования к ним
- 5.10.2. Электрогидравлические рулевые машины
- 5.10.3. Телепередачи рулевых машин
- 6. Судовые системы, передачи и валопровод
- 6.1. Система смазки
- 6.2. Система охлаждения
- 6.3. Топливная система
- 6.4. Система сжатого воздуха
- 6.5. Система газовыпуска
- 6.6. Осушительная, балластная и противопожарная системы
- 6.7. Система вентиляции и кондиционирования воздуха
- 6.8. Система отопления
- 6.9. Передачи
- 6.9.1. Механические передачи
- 6.9.2. Электропередачи
- 6.9.3. Гидродинамические муфты
- 6.10. Валопровод
- 6.10.1. Назначение и устройство валопровода
- 6.10.2. Особенности работы валопровода
- 7. Судовое электрооборудование
- 7.1. Требования к судовому электрооборудованию
- 7.2. Гребные электрические установки
- Список литературы
- Суднові енергетичні установки та електрообладнання суден
- 65029, М. Одеса, Дідріхсона,8, корп.7