2.5. Вспомогательные водотрубные котлы с принудительной циркуляцией
К недостаткам котлов с естественной циркуляцией относится их громоздкость, связанная с необходимостью вертикальной ориентации поверхностей нагрева. Кроме того, с уменьшением температуры продуктов сгорания (имеется ввиду использование в качестве греющего агента отработавших в ДВС выхлопных газов), а также с повышением давления вырабатываемого пара надежность естественной циркуляции уменьшается. Это в конечном итоге может привести к пережогу труб, образующих поверхность нагрева. Поэтому в ряде случаев в паровых котлах применяют искусственную (принудительную) циркуляцию.
На рис. 17 показан вспомогательный водотрубный котел с принудительной циркуляцией типа “Ла Монт”.
Для производства пара всем выше описанным котлам необходима топка, где производится греющий агрегат-продукты сгорания. Однако в качестве генератора продуктов сгорания можно рассматривать двигатель внутреннего сгорания.
Котлы, работающие на отходящих продуктах сгорания, называются утилизационными и широко используются на морских судах
На рис. 18 изображена схема утилизационного парового котла (УПК) с цилиндрической формой кожуха и горизонтальными змеевиками.
Такие котлы предназначены для теплоснабжения и имеют невысокую паропроизводительность, так как устанавливаются на судах, имеющих относительно небольшую мощность главных ДВС ( ≈ до 7000 кВт).
Между цилиндрическим кожухом 1 и центральной трубой 2, служащей для перепуска газов мимо поверхности нагрева, установлены параллельно включенные в коллекторы 5 и 8 змеевики 3. Один змеевик состоит из двух последовательно соединенных спиралей 4 и 9 (в плане они показаны одной линией). Каждая спираль образует горизонтальный ряд труб. В одной горизонтальной плоскости спираль закручивается, в другой – раскручивается. Трубный пакет по отношению к газовому потоку может иметь шахматное или коридорное строение.
Пароводяная смесь отводится в сепаратор 6, который может иметь горизонтальное или вертикальное расположение. Из сепаратора неиспарившаяся вода в смеси с питательной водой (ПВ) забирается циркуляционным насосом 7 и вновь возвращается в парообразующие змеевики 3 через коллектор 8. Кратность циркуляции в таких УПГ равна 5–8.
Перепуск газов в трубу 2 регулируется заслонкой 10. Обводной канал может располагаться вне кожуха или вообще отсутствовать. Тогда трубный пучок занимает все поперечное сечение кожуха. Изготовить внутренние спирали с малым радиусом изгиба очень трудно. Поэтому внутри пучка образуется пространство, не заполненное трубами. Его обычно на входе в пучок и при выходе из пучка закрывают дисками.
Последовательно омываемые газами змеевики испытывают различные тепловые нагрузки, что является существенным недостатком УПК подобного типа.
В настоящее время широко распро-странены утилизационные установки с развитой поверхностью нагрева, включающей экономайзеры и пароперегрева-тели.
Схема такой утилизационной котельной установки показана на рис. 19.
Поверхность нагрева состоит из верти-кально расположенных змеевиков и вклю-чает экономайзерную 2, испарительную 1 и пароперегревательную 4 секции. Отработав-шие продукты сгорания поступают в котел снизу и последовательно омывают эти сек-ции, и после этого через верхний патрубок3 выходят в выхлопную трубу. Питательная вода из теплого ящика 5 питательным насосом 6 подается в сепаратор 8, откуда циркуляционным насосом 7 направляется сначала экономайзер, который расположен на выходе продуктов сгорания (для подогре-ва воды не нужен греющий агрегат с высо-кой температурой). Далее подогретая вода поступает в испаритель (который в данном случае состоит из двух секций, одна из которых может быть отключена), после которого пароводяная смесь возвращается в сепаратор. Основная часть пара из сепаратора идет в пароперегреватель. Насыщенный пар к потребителям направляется из сепаратора по трубопроводу 9.
В зависимости от температуры продуктов сгорания утилизационные котельные установки могут вырабатывать от 0,4 кг до 0,6 кг пара на 1 кВт мощности главного двигателя.
- И.А. Бурмака, а.В. Кирис, н.А. Козьминых Судовые энергетические установки и электрооборудование судов
- Оглавление
- 4. Судовые паровые и газовые турбины 60
- 5. Судовые вспомогательные установки и механизмы 64
- 6. Судовые системы, передачи и валопровод 115
- 7. Судовое электрооборудование 131
- Список литературы 138
- Введение
- 1. Теоретические основы работы тепловых двигателей
- 1.1. Преобразование энергии в тепловых двигателях. Рабочее тело
- 1.2. Законы термодинамики
- 1.3. Параметры и процессы изменения состояния рабочего тела
- 1.4. Циклы двигателей внутреннего сгорания
- 1.5. Цикл Карно. Анализ влияния характеристик циклов двс на их кпд
- 1.6. Схема работы и цикл простейшей газотурбинной установки (гту)
- 1.7. Схема работы и цикл трехступенчатого компрессора
- 1.8. Парообразование в судовых котлах
- 1.9. Схема работы и цикл и простейшей паротурбинной установки
- 1.10. Основные понятия теплопередачи
- 2. Судовое пароэнергетическое оборудование
- 2.1. Классификация и показатели работы котельных установок
- 2.2. Газотрубные котлы
- 2.3. Принцип работы водотрубного котла
- 2.4. Вертикальный водотрубный парогенератор с естественной циркуляцией
- 2.5. Вспомогательные водотрубные котлы с принудительной циркуляцией
- 2.6. Водный режим паровых котлов
- 2.7. Топливо и его свойства
- 2.8. Топочные устройства
- 2.9. Тягодутьевые устройства
- 3. Судовые двигатели внутреннего сгорания
- 3.1. Устройство двигателя внутреннего сгорания (двс)
- 3.2. Классификация и маркировка двс
- 3.3. Принцип действия четырехтактных двс
- 3.4. Газораспределение четырехтактных дизелей
- 3.5. Принцип действия двухтактных дизелей
- 3.6. Индикаторные показатели работы двс
- 3.7. Эффективные показатели двс
- 3.8. Сравнение двух– и четырехтактных дизелей
- 3.9. Пути повышения мощности двс
- 3.10. Наддув дизелей
- 3.11. Газораспределение и продувка двухтактных дизелей
- 3.12. Образование горючей смеси в дизелях
- 3.13. Утилизация теплоты на морских судах
- 4. Судовые паровые и газовые турбины
- 4.1. Принцип действия паровых турбин
- 4.2. Активные и реактивные паровые турбины
- 4.3. Многоступенчатые турбины
- 4.4. Газовые турбины
- 5. Судовые вспомогательные установки и механизмы
- 5.1. Назначение и классификация теплообменных аппаратов
- 5.2. Основы расчета теплообменных аппаратов
- 5.3. Конструкции теплообменных аппаратов
- 5.4. Назначение и классификация судовых холодильных установок
- 5.5. Схемы работы судовых холодильных установок Одноступенчатая холодильная установка
- Холодильные установки судов для перевозки сжиженных газов
- Конструкции элементов холодильной установки
- 5.6. Общие сведения о судовых насосах и их классификация
- 5.7. Насосы объемного принципа действия
- 5.7.1. Поршневые насосы
- 5.7.2. Роторные насосы
- 5.8. Насосы гидродинамического действия
- 5.8.1. Центробежные насосы
- 5.8.2. Осевые насосы
- 5.8.3. Струйные насосы
- 5.9. Судовые палубные механизмы и устройства
- 5.9.1. Якорные и швартовные устройства
- 5.9.2. Грузовые устройства и люковые закрытия
- 5.10. Судовые рулевые машины
- 5.10.1. Назначение рулевых машин и требования к ним
- 5.10.2. Электрогидравлические рулевые машины
- 5.10.3. Телепередачи рулевых машин
- 6. Судовые системы, передачи и валопровод
- 6.1. Система смазки
- 6.2. Система охлаждения
- 6.3. Топливная система
- 6.4. Система сжатого воздуха
- 6.5. Система газовыпуска
- 6.6. Осушительная, балластная и противопожарная системы
- 6.7. Система вентиляции и кондиционирования воздуха
- 6.8. Система отопления
- 6.9. Передачи
- 6.9.1. Механические передачи
- 6.9.2. Электропередачи
- 6.9.3. Гидродинамические муфты
- 6.10. Валопровод
- 6.10.1. Назначение и устройство валопровода
- 6.10.2. Особенности работы валопровода
- 7. Судовое электрооборудование
- 7.1. Требования к судовому электрооборудованию
- 7.2. Гребные электрические установки
- Список литературы
- Суднові енергетичні установки та електрообладнання суден
- 65029, М. Одеса, Дідріхсона,8, корп.7