2.6. Водный режим паровых котлов
Вода, используемая на судне, должна удовлетворять определенным требованиям, так как от ее качества зависит эксплуатационная надежность и эффективность работы энергетической установки. В судовых условиях различают воду питательную, котловую, дистиллят (от испарителей), добавочную, пресную, забортную.
Питательная вода представляет собой конденсат отработавшего пара. Количество добавочной воды определяется назначением, типом, параметрами и техническим состоянием энергетической установки. В дизельных установках потери пара и конденсата составляют ≈ 5% паропроизводительности котла и более. В паротурбинных установках эти потери в худшем случае составляют 2%. Эти потери возмещаются добавочной водой из запасов опресненной воды.
Независимо от назначения установки необходимо стремиться к сокращению потерь пара и конденсата, так как для приготовления добавочной воды требуются специальные установки, расходуется топливо или средства на приобретение воды в портах. Даже пресная забортная вода не пригодна для использования в качестве добавочной без обработки.
Примеси воды делятся на две группы: нерастворимые (грубодисперсные взвешенные) вещества и растворимые (молекулярно-ионодисперсные) вещества.
Нерастворимые примеси удаляются при помощи различных фильтров, в которых используется кокс, древесный, уголь, ткани.
К растворимым примесям относятся главным образом поваренная соль NaCl, хористый калий KCl, хлористый магний MgCl2, гипс CaSO4 и много других соединений в очень маленьких количествах.
Из перечисленных соединений растворимость NaCl и KCl растет с увеличением температуры раствора, а растворимость MgCl 2 и СаSO4 наоборот – чем выше температура, тем больше вероятность осаждения солей в виде накипи. Как правило это осаждение происходит на поверхности нагрева в виде накипи. Накипь является плохим проводником теплоты и ее наличие на поверхности нагрева может вызвать повышение температуры металла, которое может привести к разрушению этой поверхности.
Во избежание этого необходимо обеспечить безнакипной режим работы котлов, для чего необходимо знать качественные показатели воды, которые приведены ниже.
Общее солесодержание или соленость – суммарное массовое количество (мг/кг) всех катионов и анионов (в морской воде соли находятся в ионном состоянии – основные катионы: Na+, Са2+ , Мg 2+, К+ ; анионы: Cl-, SO42-, NCO3– , SiO32-) . Общее содержание солей в океанской воде в среднем составляет 35 г/кг (35000 мг/кг). Максимальное солесодержание имеет вода Красного моря (41 г/кг), а минимальное – вода Балтийского моря – 8 г/кг. Значительную часть солесодержания морской воды (до 89%) составляют хлористые соли.
Жесткость воды определяет содержание кальциевых и магниевых солей и позволяет судить о накипеобразующей способности воды. Жесткость выражается в миллиграмм-эквивалентах на 1 л воды (мг.экв/л).
Конденсат пара и дистиллят испарителей (который используется в качестве добавочной воды) содержат небольшое количество солей (≈ до 10 мг/кг) и должны иметь жесткость до ≈ 0,03 мг.экв/кг. Требования к циркулирующей и добавочной воде на паротурбинных судах существенно выше и эти требования ужесточаются с повышением давления в котлах.
Несмотря на небольшое количество солей в конденсате отработавшего пара и добавочной воде, для обеспечения полностью безнакипного режима применяют внутрикотловую отработку воды (вводятся присадки во время работы, требуемое количество которых определяют по химическому анализу котловой воды), в результате которой соли, вносимые питательной водой, выпадают в виде рыхлого шлама в объеме воды, а не на теплообменных поверхностях в виде накипи.
Проще всего для внутрикотловой обработки использовать тринатрийфосфат (Na3PO412H2O), который взаимодействует с солями жесткости и образует шлам, который накапливается в нижних (водяных) и верхних (пароводяных) коллекторах и удаляется путем их периодической продувки.
- И.А. Бурмака, а.В. Кирис, н.А. Козьминых Судовые энергетические установки и электрооборудование судов
- Оглавление
- 4. Судовые паровые и газовые турбины 60
- 5. Судовые вспомогательные установки и механизмы 64
- 6. Судовые системы, передачи и валопровод 115
- 7. Судовое электрооборудование 131
- Список литературы 138
- Введение
- 1. Теоретические основы работы тепловых двигателей
- 1.1. Преобразование энергии в тепловых двигателях. Рабочее тело
- 1.2. Законы термодинамики
- 1.3. Параметры и процессы изменения состояния рабочего тела
- 1.4. Циклы двигателей внутреннего сгорания
- 1.5. Цикл Карно. Анализ влияния характеристик циклов двс на их кпд
- 1.6. Схема работы и цикл простейшей газотурбинной установки (гту)
- 1.7. Схема работы и цикл трехступенчатого компрессора
- 1.8. Парообразование в судовых котлах
- 1.9. Схема работы и цикл и простейшей паротурбинной установки
- 1.10. Основные понятия теплопередачи
- 2. Судовое пароэнергетическое оборудование
- 2.1. Классификация и показатели работы котельных установок
- 2.2. Газотрубные котлы
- 2.3. Принцип работы водотрубного котла
- 2.4. Вертикальный водотрубный парогенератор с естественной циркуляцией
- 2.5. Вспомогательные водотрубные котлы с принудительной циркуляцией
- 2.6. Водный режим паровых котлов
- 2.7. Топливо и его свойства
- 2.8. Топочные устройства
- 2.9. Тягодутьевые устройства
- 3. Судовые двигатели внутреннего сгорания
- 3.1. Устройство двигателя внутреннего сгорания (двс)
- 3.2. Классификация и маркировка двс
- 3.3. Принцип действия четырехтактных двс
- 3.4. Газораспределение четырехтактных дизелей
- 3.5. Принцип действия двухтактных дизелей
- 3.6. Индикаторные показатели работы двс
- 3.7. Эффективные показатели двс
- 3.8. Сравнение двух– и четырехтактных дизелей
- 3.9. Пути повышения мощности двс
- 3.10. Наддув дизелей
- 3.11. Газораспределение и продувка двухтактных дизелей
- 3.12. Образование горючей смеси в дизелях
- 3.13. Утилизация теплоты на морских судах
- 4. Судовые паровые и газовые турбины
- 4.1. Принцип действия паровых турбин
- 4.2. Активные и реактивные паровые турбины
- 4.3. Многоступенчатые турбины
- 4.4. Газовые турбины
- 5. Судовые вспомогательные установки и механизмы
- 5.1. Назначение и классификация теплообменных аппаратов
- 5.2. Основы расчета теплообменных аппаратов
- 5.3. Конструкции теплообменных аппаратов
- 5.4. Назначение и классификация судовых холодильных установок
- 5.5. Схемы работы судовых холодильных установок Одноступенчатая холодильная установка
- Холодильные установки судов для перевозки сжиженных газов
- Конструкции элементов холодильной установки
- 5.6. Общие сведения о судовых насосах и их классификация
- 5.7. Насосы объемного принципа действия
- 5.7.1. Поршневые насосы
- 5.7.2. Роторные насосы
- 5.8. Насосы гидродинамического действия
- 5.8.1. Центробежные насосы
- 5.8.2. Осевые насосы
- 5.8.3. Струйные насосы
- 5.9. Судовые палубные механизмы и устройства
- 5.9.1. Якорные и швартовные устройства
- 5.9.2. Грузовые устройства и люковые закрытия
- 5.10. Судовые рулевые машины
- 5.10.1. Назначение рулевых машин и требования к ним
- 5.10.2. Электрогидравлические рулевые машины
- 5.10.3. Телепередачи рулевых машин
- 6. Судовые системы, передачи и валопровод
- 6.1. Система смазки
- 6.2. Система охлаждения
- 6.3. Топливная система
- 6.4. Система сжатого воздуха
- 6.5. Система газовыпуска
- 6.6. Осушительная, балластная и противопожарная системы
- 6.7. Система вентиляции и кондиционирования воздуха
- 6.8. Система отопления
- 6.9. Передачи
- 6.9.1. Механические передачи
- 6.9.2. Электропередачи
- 6.9.3. Гидродинамические муфты
- 6.10. Валопровод
- 6.10.1. Назначение и устройство валопровода
- 6.10.2. Особенности работы валопровода
- 7. Судовое электрооборудование
- 7.1. Требования к судовому электрооборудованию
- 7.2. Гребные электрические установки
- Список литературы
- Суднові енергетичні установки та електрообладнання суден
- 65029, М. Одеса, Дідріхсона,8, корп.7