Введение
Основным назначением судовой энергетической установки (СЭУ) является обеспечение движения судна. В нее входят механизмы и устройства, снабжающие судно электроэнергией, паром, водой и обеспечивающие работу самой энергетической установки, а также обеспечивающие управление судном, производство грузовых операций, кондиционирование воздуха во всех помещениях и трюмах.
Вся совокупность механизмов и систем СЭУ делится на:
– главную установку, обеспечивающую движение судна;
– вспомогательную установку, обеспечивающую потребности судна в энергии на ходу и стоянке;
– системы и механизмы общесудового назначения.
Главная установка состоит из главных двигателей, передачи, валопровода и движителя. Работа главной установки обеспечивается системами топливной, масляной, охлаждения, газовоздушной и системой сжатого воздуха.
Все судовые энергетические установки являются теплосиловыми, так как работа в них совершается за счет тепловой энергии, выделяющейся при сгорании топлива (или делении ядер расщепляющихся элементов в атомных энергетических установках).
Морские и речные суда по типу главного двигателя можно классифицировать следующим образом:
Пароходы, где главным двигателем являлся паропоршневой двигатель.
Теплоходы, где главный двигатель – двигатель внутреннего сгорания (ДВС).
Турбоходы, которые делятся на паротурбоходы (главный двигатель – паровая турбина) и газотурбоходы (главный двигатель – газовая турбина).
Электроходы, гребной винт которых приводится в действие электродвигателями, получающими питание от дизельгенератора или турбогенератора.
Атомоходы, где используется ядерная энергетическая установка.
Главные установки классифицируются по следующим признакам:
– по типу главных двигателей: паровые машины, двигатели внутреннего сгорания (ДВС); газовые и паровые турбины; гребные электродвигатели; ядерные энергоустановки.
– по количеству гребных валов: одно-, двух- и многовальные.
– по типу главной передачи – с прямой механической, редукторной, электрической или комбинированной.
– по типу движителя – с гребными винтами, водометами, воздушными винтами, крыльчатыми движителями.
Первой практически пригодной СЭУ была паровая машина, установленная инженером Робертом Р.Фултоном на речное судно «Клермонт», которое открыло новую эру в истории судоходства, начав совершать регулярные рейсы и перевозить пассажиров между Нью-Йорком и Олбани со скоростью 5 узлов. На деревянном судне длиной 43 м были установлены две мачты, на которых в случае необходимости поднимались паруса в помощь двигателю мощностью 20 л.с. (1 л.с. = 0,735 кВт).
Что касается стран СНГ, то первый пароход «Елизавета» (длина 18,3 м, ширина 4,5 м, осадка 0,61 м) был построен в России в 1815 году для плавания между Петербургом и Кронштадтом.
Однако постепенно паропоршневая машина стала малопригодной для крупных транспортных судов, так как ее низкий коэффициент полезного действия вынуждал увеличивать размеры паровой машины, что существенно уменьшало полезную грузоподъемность. Так, к 1900 году судовая паровая машина достигла пределов своей мощности – 20000 л.с. при следующих размерах: длина и ширина машины составляла 22 и 12 м, диаметр цилиндра и ход поршня 2,85 м и 1,8 м соответственно.
Кардинальное повышение эффективности СЭУ было связано в то время с появлением многоступенчатых паровых турбин, позволивших не только увеличить коэффициент полезного действия (КПД) с 4-5% до 12-13%, но и существенно уменьшить массогабаритные характеристики двигателей.
В 1884 г. английский инженер и предприниматель Ч.Парсонс изобрел первую реактивную многоступенчатую турбину (мощностью 5 л.с. при частоте вращения 24000 1/мин) и основал компанию по производству морских паровых турбин, которая построила первый турбоход «Турбиния». Турбоход был спущен на воду, в 1899 г. получил две турбины мощностью по 1000 кВт и на испытаниях показал скорость 20 узлов. Длина судна составляла 37,8 м, ширина 3,2 м, водоизмещение 44,5 т.
В это же время капитан-лейтенантом Кузьминским П.Д. была построена и установлена на речном катере первая газотурбинная установка, которая испытывалась в 1892 – 1897 г.г.
Однако настоящую революцию в судовых энергетических установках произвело создание Рудольфом Дизелем в 1897 г. первого экспериментального двигателя внутреннего сгорания с внутренним смесеобразованием. Однако этот двигатель не оправдал надежд изобретателя, так как мог работать только на керосине.
В 1898 г. Э.Нобель покупает патент и на своем заводе (после революции завод «Русский дизель») существенно перерабатывает конструкцию двигателя для обеспечения условий работы на сырой нефти. После этого он является наиболее экономичным двигателем – на первом русском дизеле мощностью 18 кВт расход топлива (сырой нефти) составил 0,3 кг на 1 кВт∙ч, что было на треть меньше расхода керосина в двигателе Р.Дизеля.
Следует отметить, что суда с паровыми или газовыми турбинами оказались эффективными только при сочетании большого водоизмещения и требуемой для высокой скорости большой мощности. Такое сочетание характерно для пассажирских судов и кораблей военного флота.
В настоящее время дизельные установки занимают доминирующее положение на флоте, работают на дешевых тяжелых сортах топлива, имеют низкий расход топлива и самый высокий КПД.
Так, фирма «Wartsila», являющаяся одним из самых крупных производителей судовых дизельных двигателей, предлагает судовой двигатель мощностью 80000 кВт с удельным расходом топлива менее 170 г/кВт∙ч и к.п.д. более 50%.
По мнению авторов, учебник по дисциплине «Судовые энергетические установки и электрооборудование судов» будет способствовать формированию у судоводителей стойких базовых знаний о строении и принципах действия судового энергетического комплекса и характере взаимодействия его элементов.
Целью дисциплины является приобретение будущими специалистами основ для дальнейшего усвоения материала специальных дисциплин и успешной практической деятельности на морских и речных судах.
В учебнике введение, главы 1, 2, 3 и 4 написаны А.В. Кирисом (ОНМА); главы 5 и 7 – Н.А. Козьминых (ОНМА); при подготовке главы 6 использованы материалы М.В. Грибиниченко (ДВПИ им. Куйбышева, РФ). Под редакцией к.д.п. И.А. Бурмаки (ОHМА).
- И.А. Бурмака, а.В. Кирис, н.А. Козьминых Судовые энергетические установки и электрооборудование судов
- Оглавление
- 4. Судовые паровые и газовые турбины 60
- 5. Судовые вспомогательные установки и механизмы 64
- 6. Судовые системы, передачи и валопровод 115
- 7. Судовое электрооборудование 131
- Список литературы 138
- Введение
- 1. Теоретические основы работы тепловых двигателей
- 1.1. Преобразование энергии в тепловых двигателях. Рабочее тело
- 1.2. Законы термодинамики
- 1.3. Параметры и процессы изменения состояния рабочего тела
- 1.4. Циклы двигателей внутреннего сгорания
- 1.5. Цикл Карно. Анализ влияния характеристик циклов двс на их кпд
- 1.6. Схема работы и цикл простейшей газотурбинной установки (гту)
- 1.7. Схема работы и цикл трехступенчатого компрессора
- 1.8. Парообразование в судовых котлах
- 1.9. Схема работы и цикл и простейшей паротурбинной установки
- 1.10. Основные понятия теплопередачи
- 2. Судовое пароэнергетическое оборудование
- 2.1. Классификация и показатели работы котельных установок
- 2.2. Газотрубные котлы
- 2.3. Принцип работы водотрубного котла
- 2.4. Вертикальный водотрубный парогенератор с естественной циркуляцией
- 2.5. Вспомогательные водотрубные котлы с принудительной циркуляцией
- 2.6. Водный режим паровых котлов
- 2.7. Топливо и его свойства
- 2.8. Топочные устройства
- 2.9. Тягодутьевые устройства
- 3. Судовые двигатели внутреннего сгорания
- 3.1. Устройство двигателя внутреннего сгорания (двс)
- 3.2. Классификация и маркировка двс
- 3.3. Принцип действия четырехтактных двс
- 3.4. Газораспределение четырехтактных дизелей
- 3.5. Принцип действия двухтактных дизелей
- 3.6. Индикаторные показатели работы двс
- 3.7. Эффективные показатели двс
- 3.8. Сравнение двух– и четырехтактных дизелей
- 3.9. Пути повышения мощности двс
- 3.10. Наддув дизелей
- 3.11. Газораспределение и продувка двухтактных дизелей
- 3.12. Образование горючей смеси в дизелях
- 3.13. Утилизация теплоты на морских судах
- 4. Судовые паровые и газовые турбины
- 4.1. Принцип действия паровых турбин
- 4.2. Активные и реактивные паровые турбины
- 4.3. Многоступенчатые турбины
- 4.4. Газовые турбины
- 5. Судовые вспомогательные установки и механизмы
- 5.1. Назначение и классификация теплообменных аппаратов
- 5.2. Основы расчета теплообменных аппаратов
- 5.3. Конструкции теплообменных аппаратов
- 5.4. Назначение и классификация судовых холодильных установок
- 5.5. Схемы работы судовых холодильных установок Одноступенчатая холодильная установка
- Холодильные установки судов для перевозки сжиженных газов
- Конструкции элементов холодильной установки
- 5.6. Общие сведения о судовых насосах и их классификация
- 5.7. Насосы объемного принципа действия
- 5.7.1. Поршневые насосы
- 5.7.2. Роторные насосы
- 5.8. Насосы гидродинамического действия
- 5.8.1. Центробежные насосы
- 5.8.2. Осевые насосы
- 5.8.3. Струйные насосы
- 5.9. Судовые палубные механизмы и устройства
- 5.9.1. Якорные и швартовные устройства
- 5.9.2. Грузовые устройства и люковые закрытия
- 5.10. Судовые рулевые машины
- 5.10.1. Назначение рулевых машин и требования к ним
- 5.10.2. Электрогидравлические рулевые машины
- 5.10.3. Телепередачи рулевых машин
- 6. Судовые системы, передачи и валопровод
- 6.1. Система смазки
- 6.2. Система охлаждения
- 6.3. Топливная система
- 6.4. Система сжатого воздуха
- 6.5. Система газовыпуска
- 6.6. Осушительная, балластная и противопожарная системы
- 6.7. Система вентиляции и кондиционирования воздуха
- 6.8. Система отопления
- 6.9. Передачи
- 6.9.1. Механические передачи
- 6.9.2. Электропередачи
- 6.9.3. Гидродинамические муфты
- 6.10. Валопровод
- 6.10.1. Назначение и устройство валопровода
- 6.10.2. Особенности работы валопровода
- 7. Судовое электрооборудование
- 7.1. Требования к судовому электрооборудованию
- 7.2. Гребные электрические установки
- Список литературы
- Суднові енергетичні установки та електрообладнання суден
- 65029, М. Одеса, Дідріхсона,8, корп.7