5.11. Определение толщины зуба по делительной окружности и окружности произвольного радиуса
Рис. 5.10. К определению толщины зуба колеса по делительной окружности.
Толщина зуба (рис. 5.10) у нулевого колеса т.е. при, измеренная по начальной окружности равна
(5.28)
и соответствует ширине впадины на рейке, измеренной по прямой, перекатывающейся по начальной окружности обработки (делительной окружности), которая в этом случае совпадает с начальной окружностью колеса. Дадим рейке смещение вдоль оси , равное. Это положение показано на рис. 9.11 штриховой линией. Тогда толщина зуба колеса (или ширины впадины на производящей рейке), измеренная по делительной окружности, будет равна
(5.29)
При сдвиге рейки т. B переместится в положение , а т. С – в положение. Очевидно, что отрезкииравны, т.е.. Из прямоугольногоимеем, где- выбранный угол зацепления при нарезании колеса (обычно). Или т.к.и, то
(5.30)
Величина сдвига x, являясь величиной алгебраической, может иметь знак плюс или минус. Подставляя полученное выражение в равенство (9.29) и учитывая выражение (9.28), получаем
(5.31)
Толщина зуба , измеренная по любой окружности радиуса(рис. 5.11 и 5.12), определяется из следующих условий. Сумма угловиравна, откуда при
и
получаем
Рис. 5.11. К определению толщины зуба колеса по окружности произвольно заданного радиуса.
Рис.5.12. К выводу формулы для определения монтажного угла зацепления
Далее, используя функцию, описывающую эвольвенту боковой поверхности зуба:
и ,
то
, (5.32)
откуда
(5.33)
Подставляя в формулу (5.33) вместо выражение (5.31) получаем окончательно
(5.34)
где угол определяется из условия(рис. 5.11)
С помощью формулы (5.34) может быть определена толщина зуба на окружности любого заданного радиуса .
Формулы (5.33) и (5.34) позволяют проверить, не имеет ли зуб заострения, т.е. не пересекаются ли боковые профили зуба в т. D (рис.5.11). На окружности заострения (рис. 5.11) толщина зуба равна нулю. Следовательно, в равенстве (5.33) следует положить ,, где- радиус окружности заострения иоткуда
т.к. , то определив угол, можно найти величину радиусаокружности заострения из условия.
Обычно толщина зуба по окружности выступов не должна быть меньше (0,25…0,3)m.
Yandex.RTB R-A-252273-3
- Основы теории механизмов и машин
- Введение. Краткие сведения из истории развития теории механизмов м машин
- Глава 1. Структура и классификация механизмов
- 1.1. Основные понятия теории механизмов и машин (машина, механизм, звено, кинематическая пара, высшие и низшие пары)
- 1.2. Классификация кинематических пар по числу степеней свободы и числу условий связи
- 1.3. Избыточные связи и лишние степени свободы в механизме
- Замена в плоских механизмах высших кинематических пар цепями с низшими парами
- 1.5. Образование плоских механизмов по Ассуру
- Глава 2. Кинематический анализ механизмов с низшими парами
- Определение положений и перемещений звеньев
- Определение скоростей и ускорений звеньев
- Глава 3. Кинематический анализ механизмов с высшими парами
- 3.1. Соотношение скоростей в высшей кинематической паре
- 3.2 Механизмы с постоянным передаточным отношением
- 3.3. Сателлитные механизмы
- Замкнутые дифференциальные механизмы.
- 3.4. Конический дифференциал
- 3.5. Волновые передачи
- 3.6. Механизмы с переменным передаточным отношением
- Кулачковые механизмы.
- Глава 4. Силы,действующие в механизме
- 4.1 Классификация сил
- Движущие силы и моменты.
- Силы полезного сопротивления
- 4.2. Силы инерци Общий случай движения.
- Поступательно - вращающееся звено.
- Вращающееся звено.
- 4.3. Силы трения Виды трения
- Сила трения.
- Трение качения.
- Коэффициент трения качения.
- Глава 5. Синтез зубчатых механизмов
- 5.1. Основная теорема и основной закон зацепления
- Из подобия иииимеем
- Равенство (5.4) называется основной теоремой зацепления.
- Расстояние a между точками иравно
- 5.2. Эвольвента окружности. Её уравнение и свойства
- 5.3. Свойства эвольвентного зацепления
- 5.4. Элементы эвольвентного зубчатого колеса
- 5.5. Исходный производящий реечный контур
- 5.6. Способы изготовления зубчатых колёс. Понятие о стандартном зацеплении
- 5.7. Определение монтажного угла зацепления ()
- 5.8. Явление подрезания зубьев
- 5.9. Исходный производящий реечный контур
- 5.10. Определение Zmin и Xmin из условия отсутствия подрезания
- 5.11. Определение толщины зуба по делительной окружности и окружности произвольного радиуса
- 5.12. Определение угла зацепления для колёс, нарезанных со сдвигом рейки
- 5.13. Определение геометрических размеров колёс со сдвигом
- Глава 6. Синтез кулачковых механизмов
- 6.1. Основные виды кулачковых механизмов
- 6.2. Исходные данные для проектирования кулачковых механизмов
- 6.3. Определение основных размеров кулачковых механизмов
- 6.4. Определение угла давления через основные параметры кулачкового механизма
- 6.5. Определение минимального радиуса профиля кулачка
- 6.6. Проектирование кулачковых механизмов из условия выпуклости кулачка
- Глава 7. Требования, предъявляемые к механизмам
- Факторы, определяющие работоспособность механизмов и их деталей
- . Материалы
- Точность изготовления деталей механизмов и приборов
- Заключение
- Библиографический список
- Оглавление
- 394026 Воронеж, Московский просп., 14