logo
Основы ТММ

3.1. Соотношение скоростей в высшей кинематической паре

Вращающееся ведомое звено

а) б)

в)

Рис. 3.1. К теореме о соотношении скоростей в высшей кинематической паре

Предположим, что движение от ведущего звена 1 к ведомому 2, вращающихся вокруг параллельных осей О1 и О2, передается при помощи высшей кинематической пары (рис. 3.1). Рабочими профилями звеньев являются кривые ab и cd.

Если сообщить всей системе вращение с угловой скоростью (-2), то первое звено будет совершать два вращательных движения: с угловой скоростью 1 вокруг оси О1 и с угловой скоростью (-2) вокруг оси О2, а второе будет неподвижным. На основании теоремы о сложении угловых скоростей оба эти движения можно заменить одним - вокруг мгновенной оси вращения - с относительной угловой скоростью  = 1+ (- 2).

Как известно, при этом положение мгновенного центра вращения (МВЦ) - точки Р, через который проходит мгновенная ось вращения (перпендикулярно к плоскости рисунка), в относительном движении определяется отношением:

(3.1)

При внешнем касании положение МВЦ (точки Р) находится между центрами О1 и О2 (рис. 3.1, а), отрезки РО1 и РО2 имеют разное направление, и звенья 1 и 2 вращаются в разные стороны; если же точка Р находится по одну сторону от центров О1 и О2 (внутреннее касание), то отрезки РО1 и РО2 имеют одинаковое направление (рис. 3.1, б) и звенья 1 и 2 вращаются в одну сторону.

Относительная скорость точки контакта К, принадлежащей звену 1, к = LPK направлена перпендикулярно к отрезку РК в сторону, определяемую направлением . Так как относительная скорость к всегда направлена по общей касательной к профилям cd и ab в точке К, то отрезок РК является нормалью к соприкасающимся профилям в точке К. На основании указанного можно так сформулировать теорему о соотношении скоростей в высшей паре: нормаль в точке контакта профилей двух звеньев, совершающих вращательное движение, делит межосевое расстояние на отрезки, длины которых обратно пропорциональны угловым скоростям этих звеньев.

Поступательно движущееся звено. Когда ведомое звено, образующее с ведущим высшую кинематическую пару, совершает поступательное движение с линейной скоростью 2 (рис. 3.1, в), положение МЦВ в относительном получают аналогичным путем. При этом нормаль к соприкасающимся профилям в точке их контакта отсекает на перпендикуляре, опущенном из центра вращения ведущего звена на направление движения ведомого звена, отрезок О1Р = .

Геометрические места положений МВЦ на ведущих и ведомых звеньях представляют собой центроиды в относительном движении. Форма центроид зависит от соотношения скоростей этих звеньев.

Аксоидные поверхности

а) в)

б) г)

Рис. 3.2. К определению аксоидных поверхностей

Геометрическое место мгновенных осей вращения образует в относительном движении аксоиды. При передаче вращения между звеньями, оси которых параллельны, аксоиды представляют собой цилиндры (рис. 3.2, а - при внешнем касании, рис. 3.2, б - при внутреннем касании).

При передаче вращения между звеньями, оси вращения которых пересекаются, аксоидами относительного движения являются конусы с общей вершиной в точке О пересечения осей (рис. 3.2, в), а линия ОР будет мгновенной осью вращения.

В случае передачи вращения между двумя звеньями, оси которых перекрещиваются в пространстве (рис. 3.2, г), аксоиды представляют собой два гиперболоида вращения. Мгновенная ось вращения в этом случае проходит через точку Р, делящую кратчайшее расстояние О1О2 между осями в отношении:

,

где 1 и 2 - углы, образованные осями звеньев с осью мгновенного вращения и скольжения, которая должна быть параллельной вектору относительной скорости . Передача движения от ведущего звена к ведомому при наличии высшей кинематической пары может происходить двояко:

  1. за счет перекатывания без скольжения друг по другу звеньев, выполненных по форме аксоидов. В этом случае движение передается за счет сил трения, возникающих в зоне контакта этих звеньев при надавливании их друг на друга (фрикционные механизмы).

  2. за счет давления звеньев (одного на другое), очерченных по определенным профилям (кулачковые и зубчатые механизмы). В этом случае между профилями, передающими движение, происходит не только перекатывание, но и относительное скольжение.

Передаточное отношение.

Для двух звеньев 1 и 2, вращающихся с угловыми скоростями 1 и 2 под передаточным отношением понимают отношение их угловых скоростей:

и (3.2)

Если движение осуществляется между параллельными осями, то передаточное отношение имеет знак "плюс", если угловые скорости звеньев имеют одно направление и знак "минус", если направления противоположны.

Независимо от принципа осуществления передачи вращения (трениям или давлением) на основании формулы (3.1) при внешнем контакте (рис. 3.2, а) :

(3.3)

при внутреннем контакте (рис. 3.2, б) :

(3.4)

Для механизмов, в состав которых входят низшие пары, передаточное отношение представляет собой отношение линейных скоростей.

Передаточное отношение может быть выражено также через отношение угловых или линейных перемещений:

или (3.5)

Механизмы можно разделить на две группы: с постоянным передаточным отношением и переменным. К первой относятся зубчатые и фрикционные механизмы, аксоидами которых являются цилиндры, конусы, гиперболоиды вращения, ко второй - кулачковые механизмы и механизмы с некруглыми зубчатыми колесами.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4