4.2. Силы инерци Общий случай движения.
Элементарная сила инерции dP и элемент тела, совершающего плоскопараллельное движение, определяется уравнением ,
Где a - ускорение элементарной массы тела;
dm- элементарная масса тела.
Следовательно, силы инерции звена распределяются по всему объёму звена пропорционально массе и ускорению.
При определении усилий в кинематических парах и характера движения механизма оперируют статически эквивалентными системами, и распределённые силы приводятся к одной равнодействующей силе , приложенной в центре масс звена, и к равнодействующей паре сил с моментом:
(4.1) .
(4.2) .
где m-масса всего звена, кг;
as- полное ускорение центра масс звена, м/с2 ;
ε-угловое ускорение звена, 1/с2;
Js-момент инерции звена, относительно центра масс кг*м2.
Знак минус в формулах (4.1) и (4.2) показывает, что сила инерции направлена в сторону, противоположную ускорению центра массs, а момент пары сил - противоположно угловому ускорению звена.
Yandex.RTB R-A-252273-3- Основы теории механизмов и машин
- Введение. Краткие сведения из истории развития теории механизмов м машин
- Глава 1. Структура и классификация механизмов
- 1.1. Основные понятия теории механизмов и машин (машина, механизм, звено, кинематическая пара, высшие и низшие пары)
- 1.2. Классификация кинематических пар по числу степеней свободы и числу условий связи
- 1.3. Избыточные связи и лишние степени свободы в механизме
- Замена в плоских механизмах высших кинематических пар цепями с низшими парами
- 1.5. Образование плоских механизмов по Ассуру
- Глава 2. Кинематический анализ механизмов с низшими парами
- Определение положений и перемещений звеньев
- Определение скоростей и ускорений звеньев
- Глава 3. Кинематический анализ механизмов с высшими парами
- 3.1. Соотношение скоростей в высшей кинематической паре
- 3.2 Механизмы с постоянным передаточным отношением
- 3.3. Сателлитные механизмы
- Замкнутые дифференциальные механизмы.
- 3.4. Конический дифференциал
- 3.5. Волновые передачи
- 3.6. Механизмы с переменным передаточным отношением
- Кулачковые механизмы.
- Глава 4. Силы,действующие в механизме
- 4.1 Классификация сил
- Движущие силы и моменты.
- Силы полезного сопротивления
- 4.2. Силы инерци Общий случай движения.
- Поступательно - вращающееся звено.
- Вращающееся звено.
- 4.3. Силы трения Виды трения
- Сила трения.
- Трение качения.
- Коэффициент трения качения.
- Глава 5. Синтез зубчатых механизмов
- 5.1. Основная теорема и основной закон зацепления
- Из подобия иииимеем
- Равенство (5.4) называется основной теоремой зацепления.
- Расстояние a между точками иравно
- 5.2. Эвольвента окружности. Её уравнение и свойства
- 5.3. Свойства эвольвентного зацепления
- 5.4. Элементы эвольвентного зубчатого колеса
- 5.5. Исходный производящий реечный контур
- 5.6. Способы изготовления зубчатых колёс. Понятие о стандартном зацеплении
- 5.7. Определение монтажного угла зацепления ()
- 5.8. Явление подрезания зубьев
- 5.9. Исходный производящий реечный контур
- 5.10. Определение Zmin и Xmin из условия отсутствия подрезания
- 5.11. Определение толщины зуба по делительной окружности и окружности произвольного радиуса
- 5.12. Определение угла зацепления для колёс, нарезанных со сдвигом рейки
- 5.13. Определение геометрических размеров колёс со сдвигом
- Глава 6. Синтез кулачковых механизмов
- 6.1. Основные виды кулачковых механизмов
- 6.2. Исходные данные для проектирования кулачковых механизмов
- 6.3. Определение основных размеров кулачковых механизмов
- 6.4. Определение угла давления через основные параметры кулачкового механизма
- 6.5. Определение минимального радиуса профиля кулачка
- 6.6. Проектирование кулачковых механизмов из условия выпуклости кулачка
- Глава 7. Требования, предъявляемые к механизмам
- Факторы, определяющие работоспособность механизмов и их деталей
- . Материалы
- Точность изготовления деталей механизмов и приборов
- Заключение
- Библиографический список
- Оглавление
- 394026 Воронеж, Московский просп., 14