3.4.3. Аппаратура, используемая в анализе
ИК-спектрометр состоит из источника излучения, монохроматора и фотометрической части с регистрирующим устройством. Источником излучения является глобар (стержень из карбида кремния, Ni–Cr прово- локи). Прибор сконструирован таким образом, что излучение, испуска- емое источником, разделяется на два пучка, один из которых проходит через рабочую кювету с веществом, а другой – через кювету сравнения. Оба пучка направляются попеременно на входную щель монохромато- ра. Если излучение в обоих пучках поглощается неодинаково, то прием- ник регистрирует попеременно то большую, то меньшую интенсив- ность.
Чувствительность метода определяется как характеристиками де- тектора излучения (чувствительные термопары, термо-сопротивления), так и коэффициентом экстинкции изучаемого вещества. В традиционно используемых ИК-приборах можно оценить количество поглощающих молекул, необходимых для получения достаточно интенсивного спектра поглощения.
Термин «ИК-Фурье-спектроскопия» возник с появлением нового поколения приборов, в основе оптической схемы которых используются различного типа интерферометры. ИК-Фурье-спектроскопия представ- ляет собой один из вариантов метода ИК-спектроскопии и по существу не является отдельным спектральным методом.
Спектры с помощью Фурье-спектрометров получают в два этапа (рис. 3.32). Сначала регистрируется интерферограмма. Затем путѐм об- ратного преобразования Фурье (по разности хода) вычисляется спектр. Вторая часть требует относительно большого объема вычислений, по- этому метод получил широкое распространение только с появлением современных компьютеров. Однако сложность получения спектров с помощью Фурье-спектрометров значительно перекрывается преимуще- ствами над другими спектральными приборами: 1) с помощью Фурье- спектрометров можно регистрировать одновременно весь спектр; 2) благодаря тому, что в интерферометре входное отверстие больших размеров, чем щель спектральных приборов с диспергирующим элемен- том такого же разрешения, то Фурье-спектрометры по сравнению с ни-
70
ми имеют выигрыш в светосиле. Это позволяет: а) уменьшить время ре- гистрации спектров; б) уменьшить отношение сигнал – шум; в) повы- сить разрешение; г) уменьшить габариты прибора; 3) Фурье- спектрометры выигрывают также в точности отсчета длины волны. В дифракционных приборах длину волны можно определить только косвенно, а в Фурье-спектрометрах она определяется непосредственно.
ИК фурье-спектрометры ФСМ (рис. 3.32) – семейство лабора- торных спектрометров для средней и ближней ИК областей, предназна- ченных для: качественного и количественного анализа твердых, жидких и газообразных образцов; контроля качества продукции по ИК спек- трам.
Спектрометры полностью автоматизированы и управляются от персонального компьютера. Имеют высокую чувствительность. Спек- трометр в 10÷100 раз превосходит по чувствительности дифракционные приборы, что позволяет регистрировать предельно низкие концентрации и малые количества веществ.
Рис. 3.32. ИК-Фурье-спектрометры ФСМ
Высокая производительность. Время получения спектра 2÷20 с. позволяет выполнять экспрессные измерения, перейти от выборочного контроля продукции к сплошному, контролировать параметры техноло- гических процессов в реальном времени. Автоматизация измерений по- вышает надежность измерений, позволяет автоматизировать учет ре- зультатов и повысить эффективность их обработки.
Для регистрации спектров КР используют спектрометры КР. Например, система RamanStation 400 (рис. 3.33) представляет собой универсальный дисперсионный Раман (КР) спектрометр с CCD- детектором. Он предназначен для решения разнообразных задач в обла- сти скрининга лекарственных препаратов и в биохимических исследо- ваниях, для контроля качества и технологических процессов в фарма-
71
цевтической, полимерной и других отраслях промышленности, а также для решения исследовательских задач в науке.
Рис. 3.33. Дисперсионный КР спектрометр RamanStation 400
Интенсивность линий КР зависит от интенсивности возбуждающе- го света. Поэтому в современных спектрометрах КР применяют высо- коинтенсивные источники – лазеры: гелий-неоновый (λ=632,8 нм), ар- гоновый (λ=488,0 Нм) и криптоновый (λ=530,8 Нм и 647,1 Нм). Лазер- ные спектрометры позволяют получать спектры веществ в любых агре- гатных состояниях (рис. 3.34). Одно из направлений использования спектроскопии КР – дистанционное определение загрязнений в атмо- сфере. В качестве источника излучения используют мощные импульс- ные лазеры.
Рис. 3.34. Схема анализатора загрязнений атмосферы: 1 – лазер; 2 – монохро- матор; 3 – детектор; 4 – регистрирующее устройство; 5 – фокусирующая оптика;
6 – молекулы загрязняющих веществ в атмосфере
Контрольные вопросы
1. Требования, предъявляемые к пробоподготовке в ИК-спектро- скопии.
2. Области применения ИК-спектроскопии. 3. В чѐм состоит классическая теория комбинационного рассеяния? 4. Основные групповые частоты в ИК- и КР-спектроскопии. 5. Основной закон, используемый для количественного анализа, и об-
ласти его применения в ИК- и КР-спектроскопии. 6. Преимущества и недостатки колебательной спектроскопии при
изучении структуры веществ.
Возбуждающее излучение
Рассеянное излучение
1
3 2
5
4
72
- Глава 1. Отбор и подготовка пробы к анализу
- 1.1. Отбор пробы
- 1.2. Отбор пробы газов
- 1.3. Отбор проб жидкостей
- 1.4. Отбор пробы твердых веществ
- 1.5. Способ отбора
- 1.6. Потери при пробоотборе и хранение пробы
- 1.7. Подготовка пробы к анализу
- Глава 2. Статистическая обработка результатов
- 2.1. Погрешности химического анализа. Обработка результатов измерений
- 2.2. Систематическая ошибка
- 2.3. Оценка точности и правильности измерений при малом числе определений
- 2.4. Доверительный интервал и доверительная вероятность (надежность)
- 2.5. Аналитический сигнал. Измерение
- Глава 3. Спектральные методы исследования веществ
- 3.1. Абсорбционная спектроскопия
- 3.1.1. Фотометрический анализ
- 3.1.1.1. Выбор длины света и светофильтра в фотометрическом анализе
- 3.1.1.2. Основные приемы фотометрического анализа
- 3.1.1.3. Анализ смеси окрашенных веществ
- 3.1.1.4. Аппаратура, используемая в анализе
- 3.1.1.5. Нефелометрия и турбидиметрия
- 3.1.2. Атомно-абсорбционная спектроскопия
- 3.1.2.1. Основы метода
- 3.1.2.2. Аппаратура, используемая в анализе
- 3.2. Эмиссионный спектральный анализ
- 3.2.1. Происхождение эмиссионных спектров
- 3.2.2. Источник возбуждения
- 3.2.3. Качественный анализ
- 3.2.4. Количественный анализ
- 3.2.5. Схема проведения аэса
- 3.2.6. Аппаратура, используемая в анализе
- 3.2.6.1. Принцип работы универсального стилоскопа
- 3.2.6.2. Принцип работы спектрографа
- 3.2.6.3. Принцип работы микрофотометра
- 3.3. Фотометрия пламени
- 3.3.1. Чувствительность анализа
- 3.3.2. Количественное определение элементов
- 3.3.3. Измерение интенсивности излучения
- 3.3.4. Методы определения концентрации растворов в фотометрии пламени
- 3.4. Методы колебательной спектроскопии. Ик-спектроскопия и спектроскопия комбинационного рассеяния
- 3.4.1. Основы методов
- 3.4.2. Спектры ик и комбинационного рассеяния (кр)
- 3.4.3. Аппаратура, используемая в анализе
- 3.5. Люминесцентный анализ
- 3.5.1. Классификация и величины, характеризующие люминесцентное излучение
- 3.5.2. Основы метода
- 3.5.3. Аппаратура, используемая в анализе
- 3.6. Рентгеновская спектроскопия
- 3.6.1. Основные методы
- 3.6.1.1. Взаимодействие рентгеновского излучения с веществом
- 3.6.1.2. Рентгеновский спектр
- 3.6.2. Рентгено-эмиссионный анализ
- 3.6.2.1. Качественный анализ
- 3.6.2.2. Количественный анализ
- 3.6.2.3. Аппаратура
- 3.6.3.2. Аппаратура метода
- 3.6.4. Рентгено-абсорбционный анализ
- 3.6.5.1. Основы метода
- 3.6.5.2. Аппаратура
- 3.7. Радиоспектроскопические методы
- 3.7.1. Основы метода
- 3.7.2. Электронный парамагнитный резонанс
- 3.7.3. Ядерно-магнитный резонанс
- 3.7.3.1. Основы метода
- 3.7.3.2. Аппаратура
- 3.7.4. Ядерный квадрупольный резонанс
- 3.7.5. Другие методы радиоспектроскопии
- 3.8. Ядерная спектроскопия
- 3.8.4. Нейтронная спектроскопия
- 3.9. Лазерная спектроскопия
- 3.10. Электронная спектроскопия
- 3.10.1. Фотоэлектронная спектроскопия
- 3.10.2. Спектроскопия характеристических потерь энергии электронов
- 3.11. Вакуумная спектроскопия
- 3.12. Ультрафиолетовая спектроскопия
- Глава 4. Масс-спектрометрический метод анализа
- 4.1. Принцип действия масс-спектрометра
- 4.2. Виды масс-анализаторов
- 4.3. Элементный анализ
- 4.4. Интерпретация масс-спектров
- Глава 5. Хроматографические методы
- 5.1. Классификация хроматографических методов
- 5.2. Хроматографические параметры
- 5.3. Теория хроматографического разделения
- 5.4. Теория теоретических тарелок
- 5.5. Кинетическая теория хроматографии
- 5.6. Аппаратура
- 5.7. Качественный анализ
- 5.8. Количественный анализ
- 5.9. Газовая хроматография
- 5.9.1. Газотвердофазная хроматография
- 5.9.2. Газожидкостная хроматография
- 5.10. Жидкостная хроматография
- Глава 6. Электрохимические методы
- 6.1. Основные понятия электрохимии
- 6.1.1. Электрохимическая ячейка и ее электрический эквивалент
- 6.1.2. Индикаторный электрод и электрод сравнения
- 6.1.3. Гальванический элемент
- 6.1.4. Электрохимические системы
- 6.1.4.1. Равновесные электрохимические системы
- 6.1.4.2. Неравновесные электрохимические системы
- 6.2. Потенциометрия
- 6.2.1. Прямая потенциометрия (ионометрия)
- 6.2.2. Потенциометрическое титрование
- 6.2.3. Аппаратура
- 6.3. Кулонометрия
- 6.3.1. Прямая кулонометрия
- 6.3.2. Кулонометрическое титрование
- 6.4. Вольтамперометрия
- 6.4.1. Амперометрическое титрование
- 6.4.2. Титрование с двумя индикаторными электродами
- 6.5. Кондуктометрический метод анализа
- Глава 7. Методы термического анализа
- 7.1. Термогравиметрия и дтг
- 7.2. Метод дифференциального термического анализа
- 7.3. Дифференциальная сканирующая калориметрия
- 7.4. Дериватография
- 7.5. Дилатометрия и другие термические методы анализа
- Глава 8. Дифракционные методы анализа
- 8.1. Основы теории дифракции
- 8.2. Методы дифракционного анализа
- Глава 9. Микроскопические методы анализа
- 9.1. Световая микроскопия
- 9.2. Электронная микроскопия
- 9.2.1. Растровая электронная микроскопия
- 9.2.1.1. Аппаратура метода рэм
- 9.2.1.2. Использование вторичных и отраженных электронов в рэм
- 9.2.1.3. Типы контраста в растровой электронной микроскопии
- 9.2.1.4. Выбор условий работы рэм и подготовка образцов
- 9.2.1.5. Объекты исследования и их подготовка
- 9.2.2. Просвечивающая электронная микроскопия
- 9.2.2.1. Общая характеристика пэм
- 9.2.2.2. Аппаратура метода
- 9.2.2.3. Разновидности метода пэм
- 9.3. Сканирующие зондовые методы исследования
- 9.3.1. Сканирующая туннельная микроскопия
- 9.3.2. Атомно-силовая микроскопия
- 9.3.3. Магнитосиловая зондовая микроскопия
- 9.3.4. Сканирующая микроскопия ближней оптической зоны
- Глава 3. Спектральные методы исследования веществ .................................................................................................... 25
- Глава 4. Масс-спектрометрический метод анализа ....................................................................................................................... 152
- Глава 6. Электрохимические методы .............................. 193 6.1. Основные понятия электрохимии .............................................. 194