9.2.2.2. Аппаратура метода
Для проведения исследований методом ПЭМ используют просве- чивающие электронные микроскопы, представляющие собой высокова- куумные высоковольтные устройства, позволяющие определять размер, форму и строение вещества путем анализа углового распределения электронов, прошедших через образец.
Просвечивающий электронный микроскоп (рис. 9.16) состоит из электронной пушки и системы магнитных линз, одни из которых служат для создания освещающего пучка с небольшой расходимостью, а другие – для создания увеличенного изображения.
В вертикально расположенной колонне поддерживается вакуум 10
-2 –10
-3 Па. Для получения электронного пучка используют явление
термоэлектронной эмиссии. Источником электронов является тонкая вольфрамовая нить диаметром 0,1 мм V-образного изгиба. Нить нагре- вается переменным током до температуры 2700 °С и становится источ- ником электронов. Система, образованная катодом, анодом и нитью накала называется электронной пушкой. Ток электронного пучка зави- сит от температуры нити. Выходя из электронной пушки, пучок попада- ет в поле конденсорной линзы, которая его фокусирует и направляет на образец.
Объективная линза служит для первоначального увеличения изоб- ражения. Это очень важная часть микроскопа, так как любые дефекты изображения, появившиеся в объективной линзе, дают большие иска- жения всего изображения в целом. Для получения большого увеличения фокусное расстояние объективной линзы должно быть как можно коро- че. Для этого поле должно быть как можно сильнее и ограничено в про- странстве. Увеличение поля достигается путем увеличения числа вит- ков. Для уменьшения протяженности поля используют оболочку – маг- нитопровод для катушки из ферромагнитного материала. Внутри распо- лагают полюсные наконечники с малым зазором между полюсами и с отверстием диаметром 4–6 мм для прохода электронов и размещения образца. Этим достигается интенсивное поле в малом объеме.
287
Рис. 9.16. Общий вид колонны ПЭМ: 1 – высоковольтный кабель; 2 – электрон-
ная пушка; 3 – катодный узел; 4 – управляющий электрод; 5 – анод; 6 – первая кон- денсорная линза; 7 – вторая конденсорная линза; 8 – отклоняющая система юсти- ровки осветителя; 9 – камера образцов; 10 – апертурная диафрагма объектива;
11 – объективная линза; 12 – полевая диафрагма; 13 – промежуточная линза; 14 – дифракционная камера; 15 – проекционная линза; 16 – микроскоп;17 – камера
наблюдения; 18 – катодолюминесцентный экран
Так как в обмотке большое число витков и сильный ток, то система подвергается нагреву, следовательно, ток через катушку может изме-
1
2 3 4 5
6
7
8
9
10
11 12
13
14 15
16
17
288
няться со временем. Этого избегают, применяя водяное охлаждение и электронную стабилизацию тока в линзах.
Объект располагается в непосредственной близости от фокальной плоскости линзы. Проходя через образец, электронный пучок рассеива- ется, отклоняясь от тяжелых атомов и поглощаясь более толстыми участками. Для повышения контраста изображения в задней фокальной плоскости объективной линзы (плоскость первичного дифракционного изображения) устанавливается аппретурная диафрагма, которая обреза- ет электроны, рассеянные на структурах с пространственными периода- ми меньшими тех, изображение которых хотят получить. Аппретурная диафрагма позволяет выбирать из всех электронов, прошедших через образец, либо только сильно рассеянные электроны, либо нерассеянные или слаборассеянные электроны. В первом случае на полученном изоб- ражении более светлыми будут выглядеть участки, соответствующие участкам образца с большей рассеивающей способностью (темнополь- ное изображение), а во втором – наоборот (светлопольное изображе- ние). Фиксация изображения на ранее выпущенных микроскопах осу- ществлялась на фотопленку или фотопластинки. В современных микро- скопах используются цифровые фото- и кинокамеры. Для микроди- фракционных исследований в состав микроскопа включают подвижную селекторную диафрагму, которая в этом случае заменяет аппретурную.
Проекционная линза служит для дальнейшего увеличения изобра- жения объекта и получения его конечного изображения на экране мик- роскопа и на фотопластинке. Для плавного изменения увеличения и по- лучения большего увеличения между объективной и проекционной лин- зами ставят промежуточную линзу.
Разрешение электронного микроскопа достигает 0,1 нм. Длина волны электронов в ПЭМ при энергии электронов 100 кэВ достигает 0,0037 нм. Поэтому с помощью просвечивающего электронного микро- скопа можно получать картины дифракции электронов – электроно- граммы, используемые для идентификации фаз при проведении каче- ственного фазового анализа.
C уменьшением длины волны возрастает разрешающая способ- ность оптической системы ПЭМ. Рост ускоряющего напряжения также приводит к возрастанию проникающей способности электронов. На микроскопах с напряжением 1000 и более кВ возможно изучение об- разцов толщиной до 5–10 мкм.
Быстрый переход от ПЭМ изображения к микродифракционным картинам (электронограммам) традиционно является сильной стороной ПЭМ.
289
- Глава 1. Отбор и подготовка пробы к анализу
- 1.1. Отбор пробы
- 1.2. Отбор пробы газов
- 1.3. Отбор проб жидкостей
- 1.4. Отбор пробы твердых веществ
- 1.5. Способ отбора
- 1.6. Потери при пробоотборе и хранение пробы
- 1.7. Подготовка пробы к анализу
- Глава 2. Статистическая обработка результатов
- 2.1. Погрешности химического анализа. Обработка результатов измерений
- 2.2. Систематическая ошибка
- 2.3. Оценка точности и правильности измерений при малом числе определений
- 2.4. Доверительный интервал и доверительная вероятность (надежность)
- 2.5. Аналитический сигнал. Измерение
- Глава 3. Спектральные методы исследования веществ
- 3.1. Абсорбционная спектроскопия
- 3.1.1. Фотометрический анализ
- 3.1.1.1. Выбор длины света и светофильтра в фотометрическом анализе
- 3.1.1.2. Основные приемы фотометрического анализа
- 3.1.1.3. Анализ смеси окрашенных веществ
- 3.1.1.4. Аппаратура, используемая в анализе
- 3.1.1.5. Нефелометрия и турбидиметрия
- 3.1.2. Атомно-абсорбционная спектроскопия
- 3.1.2.1. Основы метода
- 3.1.2.2. Аппаратура, используемая в анализе
- 3.2. Эмиссионный спектральный анализ
- 3.2.1. Происхождение эмиссионных спектров
- 3.2.2. Источник возбуждения
- 3.2.3. Качественный анализ
- 3.2.4. Количественный анализ
- 3.2.5. Схема проведения аэса
- 3.2.6. Аппаратура, используемая в анализе
- 3.2.6.1. Принцип работы универсального стилоскопа
- 3.2.6.2. Принцип работы спектрографа
- 3.2.6.3. Принцип работы микрофотометра
- 3.3. Фотометрия пламени
- 3.3.1. Чувствительность анализа
- 3.3.2. Количественное определение элементов
- 3.3.3. Измерение интенсивности излучения
- 3.3.4. Методы определения концентрации растворов в фотометрии пламени
- 3.4. Методы колебательной спектроскопии. Ик-спектроскопия и спектроскопия комбинационного рассеяния
- 3.4.1. Основы методов
- 3.4.2. Спектры ик и комбинационного рассеяния (кр)
- 3.4.3. Аппаратура, используемая в анализе
- 3.5. Люминесцентный анализ
- 3.5.1. Классификация и величины, характеризующие люминесцентное излучение
- 3.5.2. Основы метода
- 3.5.3. Аппаратура, используемая в анализе
- 3.6. Рентгеновская спектроскопия
- 3.6.1. Основные методы
- 3.6.1.1. Взаимодействие рентгеновского излучения с веществом
- 3.6.1.2. Рентгеновский спектр
- 3.6.2. Рентгено-эмиссионный анализ
- 3.6.2.1. Качественный анализ
- 3.6.2.2. Количественный анализ
- 3.6.2.3. Аппаратура
- 3.6.3.2. Аппаратура метода
- 3.6.4. Рентгено-абсорбционный анализ
- 3.6.5.1. Основы метода
- 3.6.5.2. Аппаратура
- 3.7. Радиоспектроскопические методы
- 3.7.1. Основы метода
- 3.7.2. Электронный парамагнитный резонанс
- 3.7.3. Ядерно-магнитный резонанс
- 3.7.3.1. Основы метода
- 3.7.3.2. Аппаратура
- 3.7.4. Ядерный квадрупольный резонанс
- 3.7.5. Другие методы радиоспектроскопии
- 3.8. Ядерная спектроскопия
- 3.8.4. Нейтронная спектроскопия
- 3.9. Лазерная спектроскопия
- 3.10. Электронная спектроскопия
- 3.10.1. Фотоэлектронная спектроскопия
- 3.10.2. Спектроскопия характеристических потерь энергии электронов
- 3.11. Вакуумная спектроскопия
- 3.12. Ультрафиолетовая спектроскопия
- Глава 4. Масс-спектрометрический метод анализа
- 4.1. Принцип действия масс-спектрометра
- 4.2. Виды масс-анализаторов
- 4.3. Элементный анализ
- 4.4. Интерпретация масс-спектров
- Глава 5. Хроматографические методы
- 5.1. Классификация хроматографических методов
- 5.2. Хроматографические параметры
- 5.3. Теория хроматографического разделения
- 5.4. Теория теоретических тарелок
- 5.5. Кинетическая теория хроматографии
- 5.6. Аппаратура
- 5.7. Качественный анализ
- 5.8. Количественный анализ
- 5.9. Газовая хроматография
- 5.9.1. Газотвердофазная хроматография
- 5.9.2. Газожидкостная хроматография
- 5.10. Жидкостная хроматография
- Глава 6. Электрохимические методы
- 6.1. Основные понятия электрохимии
- 6.1.1. Электрохимическая ячейка и ее электрический эквивалент
- 6.1.2. Индикаторный электрод и электрод сравнения
- 6.1.3. Гальванический элемент
- 6.1.4. Электрохимические системы
- 6.1.4.1. Равновесные электрохимические системы
- 6.1.4.2. Неравновесные электрохимические системы
- 6.2. Потенциометрия
- 6.2.1. Прямая потенциометрия (ионометрия)
- 6.2.2. Потенциометрическое титрование
- 6.2.3. Аппаратура
- 6.3. Кулонометрия
- 6.3.1. Прямая кулонометрия
- 6.3.2. Кулонометрическое титрование
- 6.4. Вольтамперометрия
- 6.4.1. Амперометрическое титрование
- 6.4.2. Титрование с двумя индикаторными электродами
- 6.5. Кондуктометрический метод анализа
- Глава 7. Методы термического анализа
- 7.1. Термогравиметрия и дтг
- 7.2. Метод дифференциального термического анализа
- 7.3. Дифференциальная сканирующая калориметрия
- 7.4. Дериватография
- 7.5. Дилатометрия и другие термические методы анализа
- Глава 8. Дифракционные методы анализа
- 8.1. Основы теории дифракции
- 8.2. Методы дифракционного анализа
- Глава 9. Микроскопические методы анализа
- 9.1. Световая микроскопия
- 9.2. Электронная микроскопия
- 9.2.1. Растровая электронная микроскопия
- 9.2.1.1. Аппаратура метода рэм
- 9.2.1.2. Использование вторичных и отраженных электронов в рэм
- 9.2.1.3. Типы контраста в растровой электронной микроскопии
- 9.2.1.4. Выбор условий работы рэм и подготовка образцов
- 9.2.1.5. Объекты исследования и их подготовка
- 9.2.2. Просвечивающая электронная микроскопия
- 9.2.2.1. Общая характеристика пэм
- 9.2.2.2. Аппаратура метода
- 9.2.2.3. Разновидности метода пэм
- 9.3. Сканирующие зондовые методы исследования
- 9.3.1. Сканирующая туннельная микроскопия
- 9.3.2. Атомно-силовая микроскопия
- 9.3.3. Магнитосиловая зондовая микроскопия
- 9.3.4. Сканирующая микроскопия ближней оптической зоны
- Глава 3. Спектральные методы исследования веществ .................................................................................................... 25
- Глава 4. Масс-спектрометрический метод анализа ....................................................................................................................... 152
- Глава 6. Электрохимические методы .............................. 193 6.1. Основные понятия электрохимии .............................................. 194