2.1. Погрешности химического анализа. Обработка результатов измерений
Большинство методов контроля и анализа веществ, прежде всего, связаны с измерениями.
Измерение – это нахождение значения физической величины опыт- ным путем с помощью специальных технических средств.
Измерения физических величин делятся на прямые и косвенные. Прямое измерение – измерение, при котором искомое значение величи- ны находят непосредственно с помощью измерительного прибора (например, длина измеряется линейкой, напряжение – вольтметром, температура – термометром). Косвенные измерения – измерения, в ко- торых искомое значение величины находят на основании известной за- висимости этой величины от других, допускающих прямое измерение (например, электрическое сопротивление резистора – по падению напряжения на нем и току через него). Совместными называют произ- водимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимости между ними.
Выделяют следующие методы измерений: методы отклонений (из- меряется вся величина); нулевой метод (измеряется отклонение интере- сующей нас величины от какого-либо стандарта, как, например, в спек- трофотометрии); разностный метод (полная компенсация измеряемой величины путем приложения внешнего воздействия; регистрируется при этом не сама величина, а факт отсутствия сигнала).
Разность между результатом измерения и истинным значением называется истинной погрешностью измерения.
Найденное экспериментально значение измеряемой величины, приближенное к истинному, называется оценкой физической величины.
Оценка с указанием ее возможного интервала отклонения от ис- тинного значения (доверительного интервала, в котором с определенной степенью достоверности содержится истинное значение) называется ре- зультатом измерения.
Любые испытания проб ведут к различным погрешностям. Для до- стоверности и правильности результатов необходимо оценить степень ошибки.
Погрешности анализа можно классифицировать по различным при- знакам. По влиянию на результаты анализа их можно разделить на си- стематические и случайные. По характеру анализа во времени – на ста-
14
тические и динамические. По источникам возникновения – на методи- ческие, инструментальные, личные, которые, в свою очередь, могут быть как случайными, так и систематическими. По возможности выяв- ления и исключения из результатов анализа – на выявленные и невыяв- ленные, устранимые и неустранимые, исключенные и неисключенные. По характеру принадлежности (близости) результатов наблюдений к основной совокупности – на грубые и промахи.
Прежде всего, определяют абсолютную погрешность
ИСТ xxД , (2.1)
где Д – абсолютна погрешность; x – среднее измерение величины; ИСТ
x – истинное значение. В отдельных случаях определяют единичные погрешности.
ИСТi xxД . (2.2)
Погрешности, в зависимости от завышения или занижения, могут быть отрицательными и положительными.
Относительная погрешность может быть выражена в долях или в процентах
ИСТ х Д
Д или 100 х Д
,%Д ИСТ
. (2.3)
Приборная погрешность. Измерительный прибор всегда имеет ограниченную точность измерений. Обычно в качестве такой погрешно- сти берется половина цены наименьшего деления прибора.
Систематические погрешности вызваны постоянно действующей причиной, могут быть выявлены и устранены (рис. 2.1).
Рис. 2.1. Систематические и случайные погрешности химического анализа:
1 – идеальный случай; 2 и 3 – идеализированные примеры хим. анализа; 4 – реальная кривая
15
Случайные погрешности – причины неизвестны, могут быть оце- нены методами мат. статистики.
Промах – погрешность, резко искажающая результат, легко выяв- ляется, вызвана, как правило, небрежностью или некомпетентностью аналитика.
Воспроизводимость (сходимость) – степень близости друг к другу единичных определений (рис. 2.2).
Правильность отражает близость к нулю систематической погреш- ности.
Рис. 2.2. Воспроизводимость и правильность химического анализа
С 1993 года в практике описания методов и результатов измерений стали постепенно использоваться новые термины для характеристики точности измерений, предложенные Международной организацией по стандартизации. Предложения Международной организации по стан- дартизации стали отражением двух основных тенденций изменения метрологических терминов: детализация понятия «точность» путѐм вве- дения терминов «правильность» и «прецизионность»; отказ от исполь- зования понятия «погрешность» и применение термина «неопределѐн- ность».
Точность – степень близости результата измерений к принятому опорному значению.
Правильность – степень близости среднего значения, полученного на основании большой серии результатов измерений (или результатов испытаний), к принятому опорному значению.
Прецизионность – степень близости друг к другу независимых ре- зультатов измерений, полученных в конкретных регламентированных условиях. Прецизионность различают по тем условиям, которые под- держиваются неизменными при измерениях. При этом учитывают сле- дующие факторы, влияющие на изменчивость результатов измерений: оператор; используемое оборудование; калибровка оборудования; пара- метры окружающей среды (температура, влажность, загрязнение возду- ха и т. д.); интервал времени между измерениями; партии реактивов. Рассматривают следующие формы прецизионности:
Повторяемость (сходимость) – прецизионность в условиях по- вторяемости, при которых независимые результаты измерений (или ис-
16
пытаний) получаются одним и тем же методом на идентичных объектах испытаний, в одной и той же лаборатории, одним и тем же оператором, с использованием одного и того же оборудования, в пределах короткого промежутка времени.
Воспроизводимость – прецизионность в условиях воспроизво- димости, при которых результаты измерений (или испытаний) получают одним и тем же методом, на идентичных объектах испытаний, в разных лабораториях, разными операторами, с использованием различного оборудования.
Промежуточная прецизионность – в условиях, отличающихся от условий повторяемости и воспроизводимости.
В качестве показателей прецизионности обычно рассматривают стандартное (среднеквадратичное) отклонение, например, стандартное отклонение повторяемости или стандартное отклонение воспроизводи- мости.
Неопределѐнность измерений – параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине. Важность этого термина подчѐркивает тот факт, что использование понятия «неопределѐнность» и правил по оцениванию неопределѐнности фактически стало требованием к любой аккредитованной лаборатории.
- Глава 1. Отбор и подготовка пробы к анализу
- 1.1. Отбор пробы
- 1.2. Отбор пробы газов
- 1.3. Отбор проб жидкостей
- 1.4. Отбор пробы твердых веществ
- 1.5. Способ отбора
- 1.6. Потери при пробоотборе и хранение пробы
- 1.7. Подготовка пробы к анализу
- Глава 2. Статистическая обработка результатов
- 2.1. Погрешности химического анализа. Обработка результатов измерений
- 2.2. Систематическая ошибка
- 2.3. Оценка точности и правильности измерений при малом числе определений
- 2.4. Доверительный интервал и доверительная вероятность (надежность)
- 2.5. Аналитический сигнал. Измерение
- Глава 3. Спектральные методы исследования веществ
- 3.1. Абсорбционная спектроскопия
- 3.1.1. Фотометрический анализ
- 3.1.1.1. Выбор длины света и светофильтра в фотометрическом анализе
- 3.1.1.2. Основные приемы фотометрического анализа
- 3.1.1.3. Анализ смеси окрашенных веществ
- 3.1.1.4. Аппаратура, используемая в анализе
- 3.1.1.5. Нефелометрия и турбидиметрия
- 3.1.2. Атомно-абсорбционная спектроскопия
- 3.1.2.1. Основы метода
- 3.1.2.2. Аппаратура, используемая в анализе
- 3.2. Эмиссионный спектральный анализ
- 3.2.1. Происхождение эмиссионных спектров
- 3.2.2. Источник возбуждения
- 3.2.3. Качественный анализ
- 3.2.4. Количественный анализ
- 3.2.5. Схема проведения аэса
- 3.2.6. Аппаратура, используемая в анализе
- 3.2.6.1. Принцип работы универсального стилоскопа
- 3.2.6.2. Принцип работы спектрографа
- 3.2.6.3. Принцип работы микрофотометра
- 3.3. Фотометрия пламени
- 3.3.1. Чувствительность анализа
- 3.3.2. Количественное определение элементов
- 3.3.3. Измерение интенсивности излучения
- 3.3.4. Методы определения концентрации растворов в фотометрии пламени
- 3.4. Методы колебательной спектроскопии. Ик-спектроскопия и спектроскопия комбинационного рассеяния
- 3.4.1. Основы методов
- 3.4.2. Спектры ик и комбинационного рассеяния (кр)
- 3.4.3. Аппаратура, используемая в анализе
- 3.5. Люминесцентный анализ
- 3.5.1. Классификация и величины, характеризующие люминесцентное излучение
- 3.5.2. Основы метода
- 3.5.3. Аппаратура, используемая в анализе
- 3.6. Рентгеновская спектроскопия
- 3.6.1. Основные методы
- 3.6.1.1. Взаимодействие рентгеновского излучения с веществом
- 3.6.1.2. Рентгеновский спектр
- 3.6.2. Рентгено-эмиссионный анализ
- 3.6.2.1. Качественный анализ
- 3.6.2.2. Количественный анализ
- 3.6.2.3. Аппаратура
- 3.6.3.2. Аппаратура метода
- 3.6.4. Рентгено-абсорбционный анализ
- 3.6.5.1. Основы метода
- 3.6.5.2. Аппаратура
- 3.7. Радиоспектроскопические методы
- 3.7.1. Основы метода
- 3.7.2. Электронный парамагнитный резонанс
- 3.7.3. Ядерно-магнитный резонанс
- 3.7.3.1. Основы метода
- 3.7.3.2. Аппаратура
- 3.7.4. Ядерный квадрупольный резонанс
- 3.7.5. Другие методы радиоспектроскопии
- 3.8. Ядерная спектроскопия
- 3.8.4. Нейтронная спектроскопия
- 3.9. Лазерная спектроскопия
- 3.10. Электронная спектроскопия
- 3.10.1. Фотоэлектронная спектроскопия
- 3.10.2. Спектроскопия характеристических потерь энергии электронов
- 3.11. Вакуумная спектроскопия
- 3.12. Ультрафиолетовая спектроскопия
- Глава 4. Масс-спектрометрический метод анализа
- 4.1. Принцип действия масс-спектрометра
- 4.2. Виды масс-анализаторов
- 4.3. Элементный анализ
- 4.4. Интерпретация масс-спектров
- Глава 5. Хроматографические методы
- 5.1. Классификация хроматографических методов
- 5.2. Хроматографические параметры
- 5.3. Теория хроматографического разделения
- 5.4. Теория теоретических тарелок
- 5.5. Кинетическая теория хроматографии
- 5.6. Аппаратура
- 5.7. Качественный анализ
- 5.8. Количественный анализ
- 5.9. Газовая хроматография
- 5.9.1. Газотвердофазная хроматография
- 5.9.2. Газожидкостная хроматография
- 5.10. Жидкостная хроматография
- Глава 6. Электрохимические методы
- 6.1. Основные понятия электрохимии
- 6.1.1. Электрохимическая ячейка и ее электрический эквивалент
- 6.1.2. Индикаторный электрод и электрод сравнения
- 6.1.3. Гальванический элемент
- 6.1.4. Электрохимические системы
- 6.1.4.1. Равновесные электрохимические системы
- 6.1.4.2. Неравновесные электрохимические системы
- 6.2. Потенциометрия
- 6.2.1. Прямая потенциометрия (ионометрия)
- 6.2.2. Потенциометрическое титрование
- 6.2.3. Аппаратура
- 6.3. Кулонометрия
- 6.3.1. Прямая кулонометрия
- 6.3.2. Кулонометрическое титрование
- 6.4. Вольтамперометрия
- 6.4.1. Амперометрическое титрование
- 6.4.2. Титрование с двумя индикаторными электродами
- 6.5. Кондуктометрический метод анализа
- Глава 7. Методы термического анализа
- 7.1. Термогравиметрия и дтг
- 7.2. Метод дифференциального термического анализа
- 7.3. Дифференциальная сканирующая калориметрия
- 7.4. Дериватография
- 7.5. Дилатометрия и другие термические методы анализа
- Глава 8. Дифракционные методы анализа
- 8.1. Основы теории дифракции
- 8.2. Методы дифракционного анализа
- Глава 9. Микроскопические методы анализа
- 9.1. Световая микроскопия
- 9.2. Электронная микроскопия
- 9.2.1. Растровая электронная микроскопия
- 9.2.1.1. Аппаратура метода рэм
- 9.2.1.2. Использование вторичных и отраженных электронов в рэм
- 9.2.1.3. Типы контраста в растровой электронной микроскопии
- 9.2.1.4. Выбор условий работы рэм и подготовка образцов
- 9.2.1.5. Объекты исследования и их подготовка
- 9.2.2. Просвечивающая электронная микроскопия
- 9.2.2.1. Общая характеристика пэм
- 9.2.2.2. Аппаратура метода
- 9.2.2.3. Разновидности метода пэм
- 9.3. Сканирующие зондовые методы исследования
- 9.3.1. Сканирующая туннельная микроскопия
- 9.3.2. Атомно-силовая микроскопия
- 9.3.3. Магнитосиловая зондовая микроскопия
- 9.3.4. Сканирующая микроскопия ближней оптической зоны
- Глава 3. Спектральные методы исследования веществ .................................................................................................... 25
- Глава 4. Масс-спектрометрический метод анализа ....................................................................................................................... 152
- Глава 6. Электрохимические методы .............................. 193 6.1. Основные понятия электрохимии .............................................. 194