3.1.1. Фотометрический анализ
Фотометрия – совокупность методов абсорбционного спектрально- го анализа, основанных на избирательном поглощении электромагнит- ного излучения в видимой, ИК и УФ областях молекулами определяе- мого компонента или его соединения с подходящим реагентом.
Фотометрический метод анализа (фотометрия) основан на переве- дении определяемого компонента в поглощающее свет соединение с по- следующим определением количества этого компонента путѐм измере- ния светопоглощения раствора полученного соединения.
Фотометрический метод включает визуальную фотометрию, спек- трофотометрию и фотоколориметрию. Иногда фотометрический анализ понимают более широко, включая сюда еще турбидиметрию и нефело- метрию.
Фотоколориметрия – анализ, который основан на измерении по- глощения полихроматического излучения видимой части спектра.
Спектрофотометрия – с применением монохроматического излуче- ния в более широком спектре (от УФ до инфракрасного).
Второй анализ более точен, с большими возможностями, благодаря широкому спектру длин волн и использованию монохроматического из- лучения.
По типам изучаемых систем спектрофотометрию обычно делят на молекулярную и атомную. Различают спектрофотометрию в ИК, види- мой и УФ области спектра. Применение спектрофотометрии в УФ и ви- димой области спектра основано на поглощении электромагнитного из- лучения соединениями, содержащими хромофорные (например, С=С, С=О) и ауксохромные (ОСН3, ОН, NH2 и т. д.) группы. Поглощение из- лучения в этих областях связано с возбуждением электронов основного состояния и переходами молекул в возбужденные состояния. В ИК об- ласти проявляются переходы между колебательными и вращательными уровнями.
Нулевые растворы: если в кювету сравнения поместить дистилли- рованную воду, то полученная оптическая плотность будет слагаться из плотностей всех компонентов раствора l...ccD
BBAA .
32
Если в кювету сравнения поместить раствор, но без компонента, который мы определяем, то получим
AA cD l , где ε – молярный коэф-
фициент поглощения; l – толщина слоя. Раствор, помещаемый в кювету сравнения, называют нулевым рас-
твором сравнения. По окраске растворов окрашенных веществ можно определять кон-
центрацию того или иного компонента или визуально, или при помощи фотоэлементов – приборов, превращающих световую энергию в элек- трическую. В соответствии с этим различают фотометрический визу- альный метод анализа, называемый часто колориметрическим, и метод анализа с применением фотоэлементов – собственно фотометрический метод анализа. Фотометрический метод является объективным методом, поскольку результаты его не зависят от способностей наблюдателя в от- личие от результатов колориметрического – субъективного метода.
Фотометрический метод анализа – один из самых распространѐн- ных методов физико-химического анализа из-за сравнительной просто- ты необходимого оборудования, особенно для визуальных методов, вы- сокой чувствительности и возможности применения для определения почти всех элементов периодической системы и большого количества органических веществ. В некоторых случаях фотометрический метод может быть применѐн для одновременного определения в растворе не- скольких ионов, хотя его возможности ограничены.
Фотометрический метод анализа может применяться для большого диапазона определяемых концентраций (как для определения основных компонентов сложных технических объектов с содержанием до 30 % определяемого компонента, так и определения микропримесей в этих объектах до 10
-4 %). Комбинирование фотометрических методов с мето-
дами разделения (например, хромотографическим или экстракционным) позволяет повысить чувствительность определения, доведя его до 10
-5 .
В фотометрическом анализе применяются реакции различных ти- пов. Для определения неорганических компонентов чаще всего исполь- зуют реакции образования (разрушения) окрашенных комплексных со- единений. Для фотометрического определения органических компонен- тов чаще всего используют реакции синтеза окрашенных соединений. Реакции синтеза удобно применять и для определения некоторых неор- ганических компонентов, например сульфидов или нитритов. Значи- тельно реже применяют в фотометрическом анализе реакции окисления- восстановления. Ряд фотометрических методов основан на каталитиче- ском эффекте. Чувствительность фотометрических методов, основан- ных на обычных реакциях образования окрашенных соединений, имеет естественный предел. Поэтому если необходимо значительное повыше-
33
ние чувствительности, определяемый компонент вводят в некоторую систему в качестве катализатора. В результате каждая частица опреде- ляемого компонента приводит к образованию большого количества ча- стиц продукта реакции. Таким образом, центральное место в фотомет- рическом анализе занимает химическая реакция. Время, затрачиваемое на анализ, чувствительность метода, его точность и избирательность за- висят от выбора химической реакции и оптимальных условий образова- ния окрашенного соединения. Правильное измерение светопоглощения имеет большое значение.
- Глава 1. Отбор и подготовка пробы к анализу
- 1.1. Отбор пробы
- 1.2. Отбор пробы газов
- 1.3. Отбор проб жидкостей
- 1.4. Отбор пробы твердых веществ
- 1.5. Способ отбора
- 1.6. Потери при пробоотборе и хранение пробы
- 1.7. Подготовка пробы к анализу
- Глава 2. Статистическая обработка результатов
- 2.1. Погрешности химического анализа. Обработка результатов измерений
- 2.2. Систематическая ошибка
- 2.3. Оценка точности и правильности измерений при малом числе определений
- 2.4. Доверительный интервал и доверительная вероятность (надежность)
- 2.5. Аналитический сигнал. Измерение
- Глава 3. Спектральные методы исследования веществ
- 3.1. Абсорбционная спектроскопия
- 3.1.1. Фотометрический анализ
- 3.1.1.1. Выбор длины света и светофильтра в фотометрическом анализе
- 3.1.1.2. Основные приемы фотометрического анализа
- 3.1.1.3. Анализ смеси окрашенных веществ
- 3.1.1.4. Аппаратура, используемая в анализе
- 3.1.1.5. Нефелометрия и турбидиметрия
- 3.1.2. Атомно-абсорбционная спектроскопия
- 3.1.2.1. Основы метода
- 3.1.2.2. Аппаратура, используемая в анализе
- 3.2. Эмиссионный спектральный анализ
- 3.2.1. Происхождение эмиссионных спектров
- 3.2.2. Источник возбуждения
- 3.2.3. Качественный анализ
- 3.2.4. Количественный анализ
- 3.2.5. Схема проведения аэса
- 3.2.6. Аппаратура, используемая в анализе
- 3.2.6.1. Принцип работы универсального стилоскопа
- 3.2.6.2. Принцип работы спектрографа
- 3.2.6.3. Принцип работы микрофотометра
- 3.3. Фотометрия пламени
- 3.3.1. Чувствительность анализа
- 3.3.2. Количественное определение элементов
- 3.3.3. Измерение интенсивности излучения
- 3.3.4. Методы определения концентрации растворов в фотометрии пламени
- 3.4. Методы колебательной спектроскопии. Ик-спектроскопия и спектроскопия комбинационного рассеяния
- 3.4.1. Основы методов
- 3.4.2. Спектры ик и комбинационного рассеяния (кр)
- 3.4.3. Аппаратура, используемая в анализе
- 3.5. Люминесцентный анализ
- 3.5.1. Классификация и величины, характеризующие люминесцентное излучение
- 3.5.2. Основы метода
- 3.5.3. Аппаратура, используемая в анализе
- 3.6. Рентгеновская спектроскопия
- 3.6.1. Основные методы
- 3.6.1.1. Взаимодействие рентгеновского излучения с веществом
- 3.6.1.2. Рентгеновский спектр
- 3.6.2. Рентгено-эмиссионный анализ
- 3.6.2.1. Качественный анализ
- 3.6.2.2. Количественный анализ
- 3.6.2.3. Аппаратура
- 3.6.3.2. Аппаратура метода
- 3.6.4. Рентгено-абсорбционный анализ
- 3.6.5.1. Основы метода
- 3.6.5.2. Аппаратура
- 3.7. Радиоспектроскопические методы
- 3.7.1. Основы метода
- 3.7.2. Электронный парамагнитный резонанс
- 3.7.3. Ядерно-магнитный резонанс
- 3.7.3.1. Основы метода
- 3.7.3.2. Аппаратура
- 3.7.4. Ядерный квадрупольный резонанс
- 3.7.5. Другие методы радиоспектроскопии
- 3.8. Ядерная спектроскопия
- 3.8.4. Нейтронная спектроскопия
- 3.9. Лазерная спектроскопия
- 3.10. Электронная спектроскопия
- 3.10.1. Фотоэлектронная спектроскопия
- 3.10.2. Спектроскопия характеристических потерь энергии электронов
- 3.11. Вакуумная спектроскопия
- 3.12. Ультрафиолетовая спектроскопия
- Глава 4. Масс-спектрометрический метод анализа
- 4.1. Принцип действия масс-спектрометра
- 4.2. Виды масс-анализаторов
- 4.3. Элементный анализ
- 4.4. Интерпретация масс-спектров
- Глава 5. Хроматографические методы
- 5.1. Классификация хроматографических методов
- 5.2. Хроматографические параметры
- 5.3. Теория хроматографического разделения
- 5.4. Теория теоретических тарелок
- 5.5. Кинетическая теория хроматографии
- 5.6. Аппаратура
- 5.7. Качественный анализ
- 5.8. Количественный анализ
- 5.9. Газовая хроматография
- 5.9.1. Газотвердофазная хроматография
- 5.9.2. Газожидкостная хроматография
- 5.10. Жидкостная хроматография
- Глава 6. Электрохимические методы
- 6.1. Основные понятия электрохимии
- 6.1.1. Электрохимическая ячейка и ее электрический эквивалент
- 6.1.2. Индикаторный электрод и электрод сравнения
- 6.1.3. Гальванический элемент
- 6.1.4. Электрохимические системы
- 6.1.4.1. Равновесные электрохимические системы
- 6.1.4.2. Неравновесные электрохимические системы
- 6.2. Потенциометрия
- 6.2.1. Прямая потенциометрия (ионометрия)
- 6.2.2. Потенциометрическое титрование
- 6.2.3. Аппаратура
- 6.3. Кулонометрия
- 6.3.1. Прямая кулонометрия
- 6.3.2. Кулонометрическое титрование
- 6.4. Вольтамперометрия
- 6.4.1. Амперометрическое титрование
- 6.4.2. Титрование с двумя индикаторными электродами
- 6.5. Кондуктометрический метод анализа
- Глава 7. Методы термического анализа
- 7.1. Термогравиметрия и дтг
- 7.2. Метод дифференциального термического анализа
- 7.3. Дифференциальная сканирующая калориметрия
- 7.4. Дериватография
- 7.5. Дилатометрия и другие термические методы анализа
- Глава 8. Дифракционные методы анализа
- 8.1. Основы теории дифракции
- 8.2. Методы дифракционного анализа
- Глава 9. Микроскопические методы анализа
- 9.1. Световая микроскопия
- 9.2. Электронная микроскопия
- 9.2.1. Растровая электронная микроскопия
- 9.2.1.1. Аппаратура метода рэм
- 9.2.1.2. Использование вторичных и отраженных электронов в рэм
- 9.2.1.3. Типы контраста в растровой электронной микроскопии
- 9.2.1.4. Выбор условий работы рэм и подготовка образцов
- 9.2.1.5. Объекты исследования и их подготовка
- 9.2.2. Просвечивающая электронная микроскопия
- 9.2.2.1. Общая характеристика пэм
- 9.2.2.2. Аппаратура метода
- 9.2.2.3. Разновидности метода пэм
- 9.3. Сканирующие зондовые методы исследования
- 9.3.1. Сканирующая туннельная микроскопия
- 9.3.2. Атомно-силовая микроскопия
- 9.3.3. Магнитосиловая зондовая микроскопия
- 9.3.4. Сканирующая микроскопия ближней оптической зоны
- Глава 3. Спектральные методы исследования веществ .................................................................................................... 25
- Глава 4. Масс-спектрометрический метод анализа ....................................................................................................................... 152
- Глава 6. Электрохимические методы .............................. 193 6.1. Основные понятия электрохимии .............................................. 194