Введение
Стремительный рост промышленности, энергетики, автотранспорта, увеличение численности и урбанизация населения, химизация сельскохозяйственного производства – все это оказывает значительное воздействие на окружающую среду и, в частности, на состояние воздушного бассейна.
Общее количество атмосферного воздуха оценивается огромной цифрой (5,5…6,0)·1015 т, что составляет примерно 1,3 млн. т на каждого жителя нашей планеты, однако в крупных промышленных городах может ощущаться недостаток чистого воздуха.
Использование воздуха современными промышленными предприятиями можно охарактеризовать как повсеместное, многоцелевое крупномасштабное, поэтому защита воздушного бассейна от загрязнения является одной из важнейших проблем для всего человечества.
Сложность вопроса обусловлена промышленными выбросами, что связано с противоречиями между непрерывно возрастающим объемом промышленного производства, медленным внедрением новой, прогрессивной технологии и современного высокопроизводительного оборудования. Вследствие этого в окружающую природную среду поступают большое количество твердых, жидких и газообразных отходов, которые должны подвергаться более полной утилизации, переработке или ликвидации.
По далеко неполным данным сейчас на земном шаре ежегодно сжигается более 2,8 млрд. т нефти, 22 млрд. т угля, работают сотни миллионов различных двигателей. Ежедневно накапливаются миллионы тонн разного рода твердых, жидких и газообразных отходов. Возникает опасность нарушения пропорций между потреблением кислорода и его воспроизводством.
Одна из важнейших экологических проблем заключается в том, чтобы обеспечить чистоту воздушного бассейна. Она должна решаться комплексно, с учетом тесной взаимосвязи различных природных сред, проявляющейся, в частности, в их совместном участии в природных круговоротах многих химических элементов и соединений.
Важнейшим условием рационального использования природных ресурсов является развитие малоотходной и безотходной технологий. Инженерная мысль должна быть направлена на то, чтобы устранить отрицательное экологическое влияние действующих предприятий и исключить вероятность такого влияния ещё на стадии проектных разработок вновь создаваемых производств.
- Предисловие
- Введение
- 1Атмосфера
- 3. Организация санитарной защиты воздушного бассейна
- 3.1. Предельно допустимые концентрации вредных веществ в воздухе
- 3.2. Предельно допустимые выбросы вредных веществ в атмосферный воздух
- 3.3. Требования при проектировании предприятий
- 3.4. Санитарная защита воздушного бассейна на предприятиях
- 3.5. Обоснование допустимых выбросов вредных веществ в атмосферу
- 3.5.1. Факторы, влияющие на рассеивание вредных веществ в атмосферном воздухе и загрязнение приземного слоя воздуха
- 3.5.2. Обоснование допустимых выбросов при рассеивании вредных веществ через высокие источники
- 4. Процессы пылегазоочистных установок и аппараты для пылегазоулавливания
- 4.1. Общие положения
- Общие принципы анализа и расчета процессов и аппаратов
- Интенсивность процессов и аппаратов
- Моделирование и оптимизация процессов и аппаратов
- 4.2. Пылеулавливание
- 4.2.1. Параметры процесса пылеулавливания
- 4.2.2 Сухие пылеуловители
- Принцип работы циклона
- Основные характеристики цилиндрических циклонов
- Расчёт циклонов
- 4.2.3. Мокрые пылеуловители
- Принцип работы скруббера Вентури
- Принцип работы форсуночного скруббера
- Скрубберы центробежного типа
- Принцип работы
- Принцип действия барботажно-пенных пылеуловителей
- 4.2.4 Электрофильтры
- Принцип работы двухзонного электрофильтра
- 4.2.5 Фильтры
- Принцип работы рукавных фильтров
- Туманоуловители
- 5. Очистка от промышленных газовых выбросов
- 5.1 Общие сведения о массопередаче
- Равновесие в системе газ - жидкость
- Фазовое равновесие. Линия равновесия
- Материальный баланс. Рабочая линия
- Направление массопередачи
- Кинетика процесса абсорбции
- Конвективный перенос
- Дифференциальное уравнение массообмена в движущейся среде
- Уравнение массоотдачи
- Подобие процессов массоотдачи
- Уравнение массопередачи
- Зависимость между коэффициентом массопередачи и массоотдачи
- 5.2 Устройство абсорбционных аппаратов
- 5.3 Адсорбционная очистка газов
- 5.3.1Общие сведения
- Равновесие и скорость адсорбции
- 5.3.2 Промышленные адсорбенты
- Адсорбционная емкость адсорбентов
- Пористая структура адсорбентов
- Конструкция и расчёт адсорбционных установок
- Расчет адсорбционных установок
- 5.4 Каталитическая очистка
- 5.4.1Общие сведения
- Конструкции контактных аппаратов
- Аппараты с взвешенным (кипящим) слоем катализатора
- 6. Тепловые процессы Общие положения
- 6.1 Температурное поле. Температурный градиент. Теплопроводность
- Закон Фурье
- Дифференциальное уравнение теплопроводности
- Теплопроводность плоской стенки
- Теплопроводность цилиндрической стенки
- 6.2 Тепловое излучение
- Баланс теплового излучения
- Закон Стефана – Больцмана
- Закон Кирхгофа
- Взаимное излучение двух твердых тел
- Лучеиспускание газов
- 6.3 Передача тепла конвекцией
- Тепловое подобие
- Численные значения коэффициента теплоотдачи
- Сложная теплоотдача
- 6.4 Теплопередача Теплопередача при постоянных температурах теплоносителя
- Теплопередача при переменных температурах теплоносителя
- Уравнение теплопередачи при прямотоке и противотоке Теплоносителей
- 4.5. Нагревание, охлаждение и конденсация Общие сведения
- 6.4.1 Нагревающие агенты и способы нагревания Нагревание водяным паром
- Нагревание горячей водой
- Нагревание топочными газами
- Нагревание перегретой водой
- Нагревание электрической дугой
- 6.4.2 Охлаждающие агенты, способы охлаждения и конденсации Охлаждение до обыкновенных температур
- Охлаждение до низких температур
- Конденсация паров
- 6.4.3 Конструкции теплообменных аппаратов
- Расчет концентрации двуокиси серы
- Пример расчета насадочного абсорбера
- Пример расчёта теплообменника
- Пример расчета электрофильтра
- Методика расчета адсорбера
- В ориентировочном расчете используется формула
- 4.2.8 Находим время защитного действия адсорбера
- Библиографический список
- Содержание
- Макаров Володимир Володимирович