Нагревание перегретой водой
В качестве нагревательного агента перегретая вода используется при давлениях, достигающих критического (22,1 МН/м2) которому соответствует температура 374 °С. Поэтому с помощью перегретой воды возможно нагревание материалов до температур, не превышающих приблизительно 350 °С. Однако обогрев перегретой водой связан с применением высоких давлений, что значительно усложняет и удорожает нагревательную установку и повышает стоимость ее эксплуатации. Поэтому в настоящее время он вытесняется более экономичными способами нагрева другими высокотемпературными теплоносителями.
Для нагрева перегретой водой и другими жидкими теплоносителями используют установки с естественной и принудительной циркуляцией.
В установке с естественной циркуляцией (рисунок 4.12,а) жидкость заполняет нагревательную систему, состоящую из змеевика 1, обогреваемого в печи топочными газами, и теплоиспользующего аппарата 2, соединенных
подъемным трубопроводом 3 и опускным трубопроводом 4. Нагретая в змеевике 1 жидкость поднимается по трубопроводу 3, отдает тепло среде, нагреваемой в аппарате 2, и сама охлаждается. При этом ее плотность возрастает и жидкость возвращается в печь по трубопроводу 4 для последующего нагревания в змеевике 1. Таким образом, движение жидкости в замкнутом циркуляционном контуре происходит под действием разности плотностей нагретой и охладившейся жидкости.
Для того, чтобы свести к минимуму коррозию труб и устранить выделение неконденсирующихся газов, ухудшающих теплообмен, всю нагревательную систему заполняют дистиллированной водой, не допуская попадания в систему воздуха при ее заполнении и разогреве.
Расчет установок с естественной циркуляцией жидкого нагревающего агента ведут, исходя из равенства движущего напора в контуре и гидравлического сопротивления контура
(4.50)
а также равенства количества тепла Q, отданного нагревающим агентом в единицу времени и воспринятого в теплообменном аппарате
(4.51)
где h — разность уровней рабочей части теплообменного аппарата и змеевика в генераторе тепла, которая принимается равной разности отметок их средних сечений; g — ускорение свободного падения; ρ1, ρ2 — плотности нагревающего агента в подъемной и опускной трубах при температурах t1 и t2 соответственно (t1 > t2); G — расход циркулирующего нагревающего агента; I1 и I2— энтальпии теплоносителя в подъемной и опускной трубах; К, — коэффициент теплопередачи; F — поверхность теплообмена; tпр — температура нагреваемого продукта.
С помощью уравнений (4.50) и (4.51), а также с учётом уравнения Бернулли для определения гидравлического сопротивления контура, можно рассчитать диаметр d трубопровода и расход G любого жидкого нагревающего агента при естественной циркуляции.
Из правой части уравнения (4.50) видно, что движущий напор возрастает с увеличением h и разности плотностей нагретой и охладившейся жидкостей. Поэтому при обогреве с естественной циркуляцией теплоиспользующие аппараты располагают не менее чем на 4...5 м выше печи или другого нагревательного устройства. Таким образом, общая высота
нагревательной установки должна быть весьма значительной. Однако даже в этих условиях скорость жидкости при естественной циркуляции мала, и поэтому тепловая производительность установок с естественной циркуляцией невелика.
- Предисловие
- Введение
- 1Атмосфера
- 3. Организация санитарной защиты воздушного бассейна
- 3.1. Предельно допустимые концентрации вредных веществ в воздухе
- 3.2. Предельно допустимые выбросы вредных веществ в атмосферный воздух
- 3.3. Требования при проектировании предприятий
- 3.4. Санитарная защита воздушного бассейна на предприятиях
- 3.5. Обоснование допустимых выбросов вредных веществ в атмосферу
- 3.5.1. Факторы, влияющие на рассеивание вредных веществ в атмосферном воздухе и загрязнение приземного слоя воздуха
- 3.5.2. Обоснование допустимых выбросов при рассеивании вредных веществ через высокие источники
- 4. Процессы пылегазоочистных установок и аппараты для пылегазоулавливания
- 4.1. Общие положения
- Общие принципы анализа и расчета процессов и аппаратов
- Интенсивность процессов и аппаратов
- Моделирование и оптимизация процессов и аппаратов
- 4.2. Пылеулавливание
- 4.2.1. Параметры процесса пылеулавливания
- 4.2.2 Сухие пылеуловители
- Принцип работы циклона
- Основные характеристики цилиндрических циклонов
- Расчёт циклонов
- 4.2.3. Мокрые пылеуловители
- Принцип работы скруббера Вентури
- Принцип работы форсуночного скруббера
- Скрубберы центробежного типа
- Принцип работы
- Принцип действия барботажно-пенных пылеуловителей
- 4.2.4 Электрофильтры
- Принцип работы двухзонного электрофильтра
- 4.2.5 Фильтры
- Принцип работы рукавных фильтров
- Туманоуловители
- 5. Очистка от промышленных газовых выбросов
- 5.1 Общие сведения о массопередаче
- Равновесие в системе газ - жидкость
- Фазовое равновесие. Линия равновесия
- Материальный баланс. Рабочая линия
- Направление массопередачи
- Кинетика процесса абсорбции
- Конвективный перенос
- Дифференциальное уравнение массообмена в движущейся среде
- Уравнение массоотдачи
- Подобие процессов массоотдачи
- Уравнение массопередачи
- Зависимость между коэффициентом массопередачи и массоотдачи
- 5.2 Устройство абсорбционных аппаратов
- 5.3 Адсорбционная очистка газов
- 5.3.1Общие сведения
- Равновесие и скорость адсорбции
- 5.3.2 Промышленные адсорбенты
- Адсорбционная емкость адсорбентов
- Пористая структура адсорбентов
- Конструкция и расчёт адсорбционных установок
- Расчет адсорбционных установок
- 5.4 Каталитическая очистка
- 5.4.1Общие сведения
- Конструкции контактных аппаратов
- Аппараты с взвешенным (кипящим) слоем катализатора
- 6. Тепловые процессы Общие положения
- 6.1 Температурное поле. Температурный градиент. Теплопроводность
- Закон Фурье
- Дифференциальное уравнение теплопроводности
- Теплопроводность плоской стенки
- Теплопроводность цилиндрической стенки
- 6.2 Тепловое излучение
- Баланс теплового излучения
- Закон Стефана – Больцмана
- Закон Кирхгофа
- Взаимное излучение двух твердых тел
- Лучеиспускание газов
- 6.3 Передача тепла конвекцией
- Тепловое подобие
- Численные значения коэффициента теплоотдачи
- Сложная теплоотдача
- 6.4 Теплопередача Теплопередача при постоянных температурах теплоносителя
- Теплопередача при переменных температурах теплоносителя
- Уравнение теплопередачи при прямотоке и противотоке Теплоносителей
- 4.5. Нагревание, охлаждение и конденсация Общие сведения
- 6.4.1 Нагревающие агенты и способы нагревания Нагревание водяным паром
- Нагревание горячей водой
- Нагревание топочными газами
- Нагревание перегретой водой
- Нагревание электрической дугой
- 6.4.2 Охлаждающие агенты, способы охлаждения и конденсации Охлаждение до обыкновенных температур
- Охлаждение до низких температур
- Конденсация паров
- 6.4.3 Конструкции теплообменных аппаратов
- Расчет концентрации двуокиси серы
- Пример расчета насадочного абсорбера
- Пример расчёта теплообменника
- Пример расчета электрофильтра
- Методика расчета адсорбера
- В ориентировочном расчете используется формула
- 4.2.8 Находим время защитного действия адсорбера
- Библиографический список
- Содержание
- Макаров Володимир Володимирович