9.3.1. Сканирующая туннельная микроскопия
Туннельная сканирующая микроскопия (СТМ, STM) – метод иссле- дования структуры поверхности твердых тел, позволяющий четко визу- ализировать на ней взаимное расположение отдельных атомов.
292
Метод СТМ является основоположником всего семейства методов СЗМ. Первый сканирующий туннельный микроскоп был создан в 1981 году Гердом Биннигом и Генрихом Рорером (в 1986 г. – Нобелевская премия). Изначально метод СТМ создавался как метод, позволяющий исследовать топографию поверхности металлов с высоким (вплоть до атомарного) разрешением в сверхвысоком вакууме. Позже метод был применен для исследования других материалов, таких, как полупровод- ники, тонкие непроводящие пленки или биологические молекулы в раз- личных условиях (вакуум, воздух или жидкость).
Туннельная сканирующая микроскопия основана на туннельном эффекте.
Туннельный эффект – квантовый эффект, состоящий в проникно- вении квантовой частицы сквозь область пространства, в которой со- гласно законам классической физики нахождение частицы запрещено. Классическая частица, обладающая полной энергией E и находящаяся в потенциальном поле, может пребывать лишь в тех областях простран- ства, в которых ее полная энергия не превышает потенциальную энер- гию взаимодействия с полем. Поскольку волновая функция квантовой частицы отлична от нуля во всем пространстве и вероятность нахожде- ния частицы в определенной области пространства задается квадратом модуля волновой функции, то и в запрещенных (с точки зрения класси- ческой механики) областях волновая функция отлична от нуля.
В туннельном сканирующем микроскопе (рис. 9.17) система пьезо- кристаллов, управляемая компьютером, обеспечивает трехкоординатное перемещение металлического зонда на расстоянии порядка 0,1 нм от ис- следуемой поверхности. Между ней и зондом прикладывают напряже- ние примерно 1 В. В зазоре возникает туннельный ток величиной около 1–10 нА, который зависит от свойств и конфигурации атомов на иссле- дуемой поверхности материала. Этот ток регистрируется приборами.
Туннельным этот метод называется в связи с тем, что ток возникает вследствие туннельного эффекта, а именно квантового перехода элек- трона через область, запрещенную классической механикой.
Если между иглой и образцом прикладывается небольшое электри- ческое напряжение (Ut), через промежуток порядка ∼1 нм начинают происходить туннельные переходы электронов, т. е. начинается проте- кание так называемого «туннельного тока» (It).
293
Рис. 9.17. Принцип работы ТСМ
Упрощенная формула для туннельного тока (случай одномерного потенциального барьера)
bdexpU~adexpU~I ttt
2 1
, (9.2)
где It – туннельный ток; Ut – прикладываемое напряжение; d – величина туннельного промежутка (расстояние между иглой и поверхностью об- разца); θ – средняя высота потенциального барьера между двумя элек- тродами; а, b – константы.
Таким образом, в простейшем случае туннельный ток экспоненци- ально зависит от ширины и высоты барьера (соответственно d туннель- ного промежутка, а также от работы выхода материалов образца и иг- лы). Эта экспоненциальная зависимость обуславливает высокую разре- шающую способность СТМ, прежде всего по высоте, и делает возмож- ным достижение атомарного разрешения.
Компьютер управляет вертикальным перемещением зонда так, что- бы ток поддерживался на заданном постоянном уровне и горизонталь- ными перемещениями по осям х и у (сканированием). Воспроизводимое на дисплее семейство кривых, отвечающих перемещениям зонда, явля- ется изображением эквипотенциальной поверхности, поэтому атомы изображаются полусферами различных радиусов.
Различают два крайних варианта записи СТМ-изображения: режим «постоянного туннельного тока» и «постоянной высоты зонда». В ре- жиме постоянного тока («топографическом») система обратной связи постоянно регистрирует туннельный ток и вносит корректировки в вы- соту зависания иглы, управляя при этом двигателями подачи иглы так, чтобы величина заданного туннельного тока оставалась постоянной в каждой точке сканирования. Игла при этом остается всегда на одном и том же расстоянии от поверхности, и коррекция высоты иглы прямо отражает рельеф поверхности образца. Происходящее при этом верти-
294
кальное по отношению к плоскости сканирования перемещение пьез- опривода отражает геометрию поверхности.
В режиме «постоянной высоты» или быстрого сканирования цепь обратной связи не отслеживает профиль поверхности (не изменяется положение иглы), но при этом регистрируются изменения туннельного тока и строение поверхности описывается в виде массива. Последний режим полезен при исследовании с атомарным разрешением относи- тельно ровных поверхностей, таких, например, как монокристаллы, так как при фиксированном положении иглы проще обеспечить механиче- скую стабильность системы в целом, а изменения туннельного тока очень чувствительны к изменению туннельного промежутка d. Данный режим не применим для исследования образцов с неизвестной морфоло- гией, шероховатых поверхностей, так как велика вероятность повре- ждения иглы. В связи с этим наибольшее распространение получил ре- жим постоянного тока.
Обычное СТМ – изображение содержит «свертку» информации как о геометрии (топографии) поверхности, так и о ее электронных характе- ристиках. Более полную информацию об электронных характеристиках поверхности можно получить из данных сканирующей туннельной спектроскопии (СТС). Регистрируя зависимость туннельного тока от напряжения, можно определять плотность электронных состояний выше и ниже уровня Ферми, в частности, получать прямую информацию о положении запрещенной зоны в полупроводниках. Если зафиксировать положение иглы относительно образца (над выбранной областью по- верхности, при этом отключается цепь обратной связи), то, разворачи- вая потенциал, прикладываемый к системе игла–образец, и регистрируя синхронно ток, протекающий через туннельный контакт, можно полу- чить зависимость туннельного тока от этого потенциала (вольт- амперную характеристику – ВАХ).
Ограничениями метода сканирующей туннельной микроскопии яв- ляются обязательность электропроводности материала исследуемого образца и необходимость высокого или сверхвысокого вакуума и низ- ких температур (до 50–100 К) для получения высоких разрешений. В то же время для разрешения в диапазоне порядка 1 нм эти требования не- обязательны.
Еще один фактор нестабильности положения зонда относительно исследуемой поверхности – влияние колебаний температуры сканера в ходе эксперимента. Учитывая малость расстояния игла–образец (∼1 нм), очевидно, что при изменении температуры сканера за счет различий в коэффициентах температурного расширения его деталей, особенно пье-
295
зокерамики, происходит неконтролируемое смещение иглы относитель- но образца (температурный дрейф).
Влияние условий сканирования на разрешение прибора проверяет- ся варьированием задаваемых оператором параметров и оптимизируется индивидуально для каждого образца.
- Глава 1. Отбор и подготовка пробы к анализу
- 1.1. Отбор пробы
- 1.2. Отбор пробы газов
- 1.3. Отбор проб жидкостей
- 1.4. Отбор пробы твердых веществ
- 1.5. Способ отбора
- 1.6. Потери при пробоотборе и хранение пробы
- 1.7. Подготовка пробы к анализу
- Глава 2. Статистическая обработка результатов
- 2.1. Погрешности химического анализа. Обработка результатов измерений
- 2.2. Систематическая ошибка
- 2.3. Оценка точности и правильности измерений при малом числе определений
- 2.4. Доверительный интервал и доверительная вероятность (надежность)
- 2.5. Аналитический сигнал. Измерение
- Глава 3. Спектральные методы исследования веществ
- 3.1. Абсорбционная спектроскопия
- 3.1.1. Фотометрический анализ
- 3.1.1.1. Выбор длины света и светофильтра в фотометрическом анализе
- 3.1.1.2. Основные приемы фотометрического анализа
- 3.1.1.3. Анализ смеси окрашенных веществ
- 3.1.1.4. Аппаратура, используемая в анализе
- 3.1.1.5. Нефелометрия и турбидиметрия
- 3.1.2. Атомно-абсорбционная спектроскопия
- 3.1.2.1. Основы метода
- 3.1.2.2. Аппаратура, используемая в анализе
- 3.2. Эмиссионный спектральный анализ
- 3.2.1. Происхождение эмиссионных спектров
- 3.2.2. Источник возбуждения
- 3.2.3. Качественный анализ
- 3.2.4. Количественный анализ
- 3.2.5. Схема проведения аэса
- 3.2.6. Аппаратура, используемая в анализе
- 3.2.6.1. Принцип работы универсального стилоскопа
- 3.2.6.2. Принцип работы спектрографа
- 3.2.6.3. Принцип работы микрофотометра
- 3.3. Фотометрия пламени
- 3.3.1. Чувствительность анализа
- 3.3.2. Количественное определение элементов
- 3.3.3. Измерение интенсивности излучения
- 3.3.4. Методы определения концентрации растворов в фотометрии пламени
- 3.4. Методы колебательной спектроскопии. Ик-спектроскопия и спектроскопия комбинационного рассеяния
- 3.4.1. Основы методов
- 3.4.2. Спектры ик и комбинационного рассеяния (кр)
- 3.4.3. Аппаратура, используемая в анализе
- 3.5. Люминесцентный анализ
- 3.5.1. Классификация и величины, характеризующие люминесцентное излучение
- 3.5.2. Основы метода
- 3.5.3. Аппаратура, используемая в анализе
- 3.6. Рентгеновская спектроскопия
- 3.6.1. Основные методы
- 3.6.1.1. Взаимодействие рентгеновского излучения с веществом
- 3.6.1.2. Рентгеновский спектр
- 3.6.2. Рентгено-эмиссионный анализ
- 3.6.2.1. Качественный анализ
- 3.6.2.2. Количественный анализ
- 3.6.2.3. Аппаратура
- 3.6.3.2. Аппаратура метода
- 3.6.4. Рентгено-абсорбционный анализ
- 3.6.5.1. Основы метода
- 3.6.5.2. Аппаратура
- 3.7. Радиоспектроскопические методы
- 3.7.1. Основы метода
- 3.7.2. Электронный парамагнитный резонанс
- 3.7.3. Ядерно-магнитный резонанс
- 3.7.3.1. Основы метода
- 3.7.3.2. Аппаратура
- 3.7.4. Ядерный квадрупольный резонанс
- 3.7.5. Другие методы радиоспектроскопии
- 3.8. Ядерная спектроскопия
- 3.8.4. Нейтронная спектроскопия
- 3.9. Лазерная спектроскопия
- 3.10. Электронная спектроскопия
- 3.10.1. Фотоэлектронная спектроскопия
- 3.10.2. Спектроскопия характеристических потерь энергии электронов
- 3.11. Вакуумная спектроскопия
- 3.12. Ультрафиолетовая спектроскопия
- Глава 4. Масс-спектрометрический метод анализа
- 4.1. Принцип действия масс-спектрометра
- 4.2. Виды масс-анализаторов
- 4.3. Элементный анализ
- 4.4. Интерпретация масс-спектров
- Глава 5. Хроматографические методы
- 5.1. Классификация хроматографических методов
- 5.2. Хроматографические параметры
- 5.3. Теория хроматографического разделения
- 5.4. Теория теоретических тарелок
- 5.5. Кинетическая теория хроматографии
- 5.6. Аппаратура
- 5.7. Качественный анализ
- 5.8. Количественный анализ
- 5.9. Газовая хроматография
- 5.9.1. Газотвердофазная хроматография
- 5.9.2. Газожидкостная хроматография
- 5.10. Жидкостная хроматография
- Глава 6. Электрохимические методы
- 6.1. Основные понятия электрохимии
- 6.1.1. Электрохимическая ячейка и ее электрический эквивалент
- 6.1.2. Индикаторный электрод и электрод сравнения
- 6.1.3. Гальванический элемент
- 6.1.4. Электрохимические системы
- 6.1.4.1. Равновесные электрохимические системы
- 6.1.4.2. Неравновесные электрохимические системы
- 6.2. Потенциометрия
- 6.2.1. Прямая потенциометрия (ионометрия)
- 6.2.2. Потенциометрическое титрование
- 6.2.3. Аппаратура
- 6.3. Кулонометрия
- 6.3.1. Прямая кулонометрия
- 6.3.2. Кулонометрическое титрование
- 6.4. Вольтамперометрия
- 6.4.1. Амперометрическое титрование
- 6.4.2. Титрование с двумя индикаторными электродами
- 6.5. Кондуктометрический метод анализа
- Глава 7. Методы термического анализа
- 7.1. Термогравиметрия и дтг
- 7.2. Метод дифференциального термического анализа
- 7.3. Дифференциальная сканирующая калориметрия
- 7.4. Дериватография
- 7.5. Дилатометрия и другие термические методы анализа
- Глава 8. Дифракционные методы анализа
- 8.1. Основы теории дифракции
- 8.2. Методы дифракционного анализа
- Глава 9. Микроскопические методы анализа
- 9.1. Световая микроскопия
- 9.2. Электронная микроскопия
- 9.2.1. Растровая электронная микроскопия
- 9.2.1.1. Аппаратура метода рэм
- 9.2.1.2. Использование вторичных и отраженных электронов в рэм
- 9.2.1.3. Типы контраста в растровой электронной микроскопии
- 9.2.1.4. Выбор условий работы рэм и подготовка образцов
- 9.2.1.5. Объекты исследования и их подготовка
- 9.2.2. Просвечивающая электронная микроскопия
- 9.2.2.1. Общая характеристика пэм
- 9.2.2.2. Аппаратура метода
- 9.2.2.3. Разновидности метода пэм
- 9.3. Сканирующие зондовые методы исследования
- 9.3.1. Сканирующая туннельная микроскопия
- 9.3.2. Атомно-силовая микроскопия
- 9.3.3. Магнитосиловая зондовая микроскопия
- 9.3.4. Сканирующая микроскопия ближней оптической зоны
- Глава 3. Спектральные методы исследования веществ .................................................................................................... 25
- Глава 4. Масс-спектрометрический метод анализа ....................................................................................................................... 152
- Глава 6. Электрохимические методы .............................. 193 6.1. Основные понятия электрохимии .............................................. 194