3.2.2 Распределение температуры в массиве грунта
В соответствии со вторым законом термодинамики самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, этот процесс принято называть теплопередачей или теплообменом. Теплообмен является сложным физическим процессом, поэтому при изучении его расчленяют на три элементарных вида: теплопроводность, конвекцию и тепловое излучение. При этом различные виды сложного переноса тепла рассматривают как сочетание элементарных видов. Для подземного МН наиболее характерны: теплоотдача (конвективный теплообмен между потоком нефти и поверхностью трубопровода) и теплопередача (теплообмен нефти и окружающего трубопровод грунта через разделяющую их стенку трубопровода) и др.
Поток тепла, идущий из нефти в металл трубопровода, из металла трубопровода в изоляцию, а из изоляции в грунт один и тот же, но записан может быть по разному. Так тепловой поток через стенку трубопровода можно определить по формуле Ньютона [1]:
, (3.3)
где K – полный коэффициент теплопередачи от нефти в окружающую среду, зависит от внутреннего и внешнего коэффициента теплоотдачи, а также от термического сопротивления стенки трубы, изоляции, отложений и прилегающего к трубопроводу грунта, Вт/(м2К). При оценочных расчётов K можно принять равным: для сухого песка – 1,2 Вт/(м2К)ля влажной глины – 1,5 Вт/(м2К), для мокрого песка – 3,5 Вт/(м2К);
D – внутренний диаметр трубопровода (отложений в трубопроводе), м;
Т – температура нефти в сечении x, К;
Тгр – естественная температура окружающей среды (грунта), К.
С другой стороны этот же тепловой поток от изоляции трубопровода в грунт за единицу времени можно определить как
, (3.4)
где 2 – коэффициент теплоотдачи, характеризующий тепловое сопротивление прогретой части грунта, Вт/(м2К);
Dиз – наружный диаметр изоляции, м;
Тиз – температура на внешней поверхности изоляции трубопровода в сечении x, К;
Т(x, y, z) – температура грунта в массиве, К;
y, z – пространственные координаты массива в плоскости, перпендикулярной оси трубопровода, имеющей координаты y=0, z= –Н, где Н – фактическая глубина заложения оси трубопровода, м.
Коэффициент теплоотдачи определяется значением коэффициента теплопроводности грунта λгр и толщиной прогретой части грунта гр
, (3.5)
Толщину прогретой части грунта можно определиьт по формуле Форхгеймера [1, 12, 13]
, (3.6)
тогда для расчёта внешний коэффициента теплоотдачи 2 подставив (3.5) в (3.6) получим формулу Форхгеймера–Власова
. (3.7)
При H/Dиз > 1 согласно [10] с точностью до 1% можно принять
. (3.8)
Если рассматривать теплопередачу между наружной поверхностью трубопровода и некоторой точкой грунта с координатами (x, y, z), то уравнение (3.8) можно преобразовать к следующему виду (см. рис. 3.2).
. (3.9)
При малых заглублениях H/Dиз<(3–4) согласно [18] следует пользоваться формулой Аронса–Кутателадзе, которая учитывает тепловое сопротивление на границе «грунт–воздух» и наличие снежного покрова, при этом формула (3.8) преобразуется к виду
, (3.10)
где гр, сн – коэффициент теплопроводности соответственно грунта и снега;
Hп – приведенная глубина заложения трубопровода [2]
;
Н – фактическая глубина его заложения;
Нсн – высота снежного покрова;
0 – коэффициент теплоотдачи от поверхности грунта в воздух, 011,63 Вт/(мград).
При H/Dиз2 вторым слагаемым под знаком логарифма в выражении (3.7) можно пренебречь. Данное равенство выполняется в случае, когда Dиз 600 мм.
Распределение температуры в массиве грунта, окружающего трубопровод, можно приближённо определить подставим в уравнение (3.4) уравнение (3.9) и приравняем к (3.3)
,
тогда выражаяТ(x, y, z) получим
. (3.11)
- Краус Юрий Александрович
- Содержание
- Введение
- 1. Общие сведения о магистральных нефтепроводах
- 1.1 Назначение и классификация нефтепроводов
- Краткая характеристика категорий участков мн
- 1.2 Устройство магистральных нефтепроводов
- 1.2.1 Состав объектов и сооружений мн
- 1.2.3 Нефтеперекачивающие станции
- 1.2.4 Линейные сооружения мн
- 1.3 Технологические схемы перекачки
- 2. Свойства нефтей
- 2.1. Классификация нефтей и контроль качества
- Типы товарной нефти
- Группы товарной нефти
- Виды товарной нефти
- 2.2. Физико-химические свойства и определение их расчётных значений
- 2.2.1. Плотность, сжимаемость и температурное расширение
- 2.2.2. Вязкость
- 2.2.3. Неньютоновские свойства нефтей
- 2.2.4. Испаряемость и давление насыщенных паров
- 2.2.5. Теплофизические свойства
- 3. Условия строительства
- 3.1 Классификация условий строительства
- 3.2 Теплофизическое влияние трубопровода на окружающий его массив грунта
- 3.2.1 Теплофизические свойства грунта
- Теплофизические характеристики грунтов
- 3.2.2 Распределение температуры в массиве грунта
- 3.3 Теплофизическое влияние массива грунта на перекачиваемы продукт. Расчетная температура
- 3.3.1. Изменение температуры по длине мн. Расчётная температура
- 3.3.2. Определение полного коэффициента теплопередачи от нефти в массив грунта
- Формулы Михеева
- 4. Конструктивные параметры трубопровода
- 4.1 Основные конструктивные параметры лч мн
- 4.1.1 Конструктивные схемы прокладки
- 4.1.2 Физико-механические характеристики сталей
- 4.1.3. Основные пространственные характеристики
- 4.2 Прочностной расчёт трубопровода по методу предельных состояниям
- 4.2.1 Схема нагружения подземного трубопровода
- 4.2.2 Расчёт несущей способности мн
- 4.2.3 Эпюра несущей способности и разращенных напоров
- 4.3 Деформируемость трубопровода
- 5. Технологические параметры
- 5.1 Основные технологические параметры мн
- 5.2 Гидравлический расчёт мн
- 5.2.1 Основные уравнения для гидравлических расчётов трубопроводов при установившемся течении
- 5.2.2 Гидравлические потери и гидравлические режимы перекачки
- Значения коэффициентов , m, для различных режимов и зон течения жидкости в трубопроводе круглого сечения
- 5.2.3 Гидравлический расчёт простого трубопровода
- 5.2.4 Гидравлический расчёт простого трубопровода с самотечными участками
- 5.2.5 Гидравлический расчёт последовательного соединения простых трубопроводов: трубопровод со вставкой
- 5.2.6 Гидравлический расчёт параллельного соединения простых трубопроводов: трубопровод с лупингом
- 5.2.7 Гидравлический расчёт сложного трубопровода с перемычками
- 5.2.8 Гидравлический расчёт разветвлённого соединения простых трубопроводов и сложного трубопровода с отводом
- 5.3 Технологический расчёт мн при стационарном режиме перекачки
- 5.3.1 Характеристики насосов и нпс
- 5.3.2 Уравнение баланса напоров
- 5.3.3 Особенности технологического расчёта мн с промежуточными перекачивающими станциями
- 5.3.4 Решение уравнения баланса напоров
- 5.4 Регулирование режимов работы мн и управление процессом перекачки
- 5.4.1 Изменение пропускной способности мн в процессе эксплуатации
- 5.4.2 Практика изменения режимов перекачки
- 5.4.3 Классификация методов регулирования
- Классификация методов регулирования
- 5.4.4 Дискретное регулирование характеристик нпс
- 5.4.5 Плавное регулирование характеристик нпс
- По трассе при регулировании дросселированием на промежуточной нпс
- 5.4.6 Группа методов, направленных на изменение характеристик лч
- 5.4.7 Выбор рациональных режимов перекачки
- 5.5 Технологический расчёт мн при последовательной перекачке
- 5.5.1 Особенности гидравлического расчёта нефтепровода при последовательной перекачке. Скачки напора в трубопроводе
- 5.5.2 Изменение расхода и давления на выходе нпс в процессе смены жидкостей
- 5.5.3 Уравнение баланса давлений при последовательной перекачке
- 5.6 Технологический расчёт мн при нестационарных процессах
- 5.6.1 Общие сведения о неустановившихся процессах и причинах их возникновения
- 5.6.2 Инерционные свойства потока нефти в трубопроводе. Формулы н.Е. Жуковского
- 5.6.3 Борьба с гидравлическим ударом
- 6. Технико-экономические показатели
- 6.1 Приведённые затраты
- 6.2 Капитальные вложения
- 6.3 Эксплуатационные расходы
- Библиографический список