2.2.1. Плотность, сжимаемость и температурное расширение
Плотность нефти ρ является важнейшей механической характеристикой нефти и показывает её массу в единице объема V, кг/м3:
. (2.1)
Плотность определяется физико-химическими свойствами. При изменении давления и температуры проявляются такие свойства нефти как сжимаемость и температурное расширение [9, 10], при этом плотность также изменяется, поэтому ρ есть функция от давления p и температуры T, т. е. ρ=f(p, T).
При колебании температуры нефти и нефтепродукты изменяют свой объем, а следовательно и плотность. Коэффициент объёмного (температурного) расширения ßТ выражает относительное увеличение объема при повышении температуры на 1°С, 1/K
,
Принимая ßТ постоянным, разделим переменные и проинтегрируем левую часть от T до 293 (т.к. расчётная температура нефти как правило меньше чем 293 K), а правую – от V(T) до V293, получим
, откуда .
Учитывая равенство (2.1) получим следующую формулу
, (2.2)
или раскладывая функцию в ряд Маклорена и оставляя первые два слагаемых получим
. (2.3)
Довольно часто также пользуются зависимостью [18]
, (2.4)
где ξ – температурная поправка, ориентировочно рассчитываемая по формуле [18]
.
Приравняв уравнения (2.3) и (2.4) нетрудно определить формулу для ориентировочного определения коэффициента объёмного расширения
, (2.5)
Не смотря на то, что все нефти являются слабо сжимаемыми жидкостями, при изменении давления их плотность всё же изменяется. И хотя изменение плотности нефти мало по сравнению с номинальным значением его всё-таки необходимо учитывать при приёмосдаточных операциях и расчётах волновых процессов. Для учёта влияния давления на плотность вводится коэффициент объемного сжатия ßV, который характеризует уменьшение объема жидкости под влиянием давления, 1/Па
. (2.6)
Знак минус в выражении (2.6) показывает, что приращению давления соответствует уменьшение объема жидкости. Рассуждая таким же образом, как и при определении влияния температуры, получим
или
, (2.7)
где K – модуль упругости жидкости, Па (для бензинов 109 Па, для керосинов, дизельных топлив 1,5109 Па);
P, Ратм – абсолютное давление нефти и атмосферное давление, Па.
Размерность давления обозначается как «Па» (паскаль), «кПа» (килопаскаль), «МПа» (мегапаскаль). В технике в настоящее время продолжают применять систему единиц МКГСС, в которой за единицу давления принимается 1 кгс/м² (1 Па=0,102 кгс/м² или 1 кгс/м²=9,81 Па ).
Обобщая сведения о сжимаемости и тепловом расширении можно записать:
. (2.8)
- Краус Юрий Александрович
- Содержание
- Введение
- 1. Общие сведения о магистральных нефтепроводах
- 1.1 Назначение и классификация нефтепроводов
- Краткая характеристика категорий участков мн
- 1.2 Устройство магистральных нефтепроводов
- 1.2.1 Состав объектов и сооружений мн
- 1.2.3 Нефтеперекачивающие станции
- 1.2.4 Линейные сооружения мн
- 1.3 Технологические схемы перекачки
- 2. Свойства нефтей
- 2.1. Классификация нефтей и контроль качества
- Типы товарной нефти
- Группы товарной нефти
- Виды товарной нефти
- 2.2. Физико-химические свойства и определение их расчётных значений
- 2.2.1. Плотность, сжимаемость и температурное расширение
- 2.2.2. Вязкость
- 2.2.3. Неньютоновские свойства нефтей
- 2.2.4. Испаряемость и давление насыщенных паров
- 2.2.5. Теплофизические свойства
- 3. Условия строительства
- 3.1 Классификация условий строительства
- 3.2 Теплофизическое влияние трубопровода на окружающий его массив грунта
- 3.2.1 Теплофизические свойства грунта
- Теплофизические характеристики грунтов
- 3.2.2 Распределение температуры в массиве грунта
- 3.3 Теплофизическое влияние массива грунта на перекачиваемы продукт. Расчетная температура
- 3.3.1. Изменение температуры по длине мн. Расчётная температура
- 3.3.2. Определение полного коэффициента теплопередачи от нефти в массив грунта
- Формулы Михеева
- 4. Конструктивные параметры трубопровода
- 4.1 Основные конструктивные параметры лч мн
- 4.1.1 Конструктивные схемы прокладки
- 4.1.2 Физико-механические характеристики сталей
- 4.1.3. Основные пространственные характеристики
- 4.2 Прочностной расчёт трубопровода по методу предельных состояниям
- 4.2.1 Схема нагружения подземного трубопровода
- 4.2.2 Расчёт несущей способности мн
- 4.2.3 Эпюра несущей способности и разращенных напоров
- 4.3 Деформируемость трубопровода
- 5. Технологические параметры
- 5.1 Основные технологические параметры мн
- 5.2 Гидравлический расчёт мн
- 5.2.1 Основные уравнения для гидравлических расчётов трубопроводов при установившемся течении
- 5.2.2 Гидравлические потери и гидравлические режимы перекачки
- Значения коэффициентов , m, для различных режимов и зон течения жидкости в трубопроводе круглого сечения
- 5.2.3 Гидравлический расчёт простого трубопровода
- 5.2.4 Гидравлический расчёт простого трубопровода с самотечными участками
- 5.2.5 Гидравлический расчёт последовательного соединения простых трубопроводов: трубопровод со вставкой
- 5.2.6 Гидравлический расчёт параллельного соединения простых трубопроводов: трубопровод с лупингом
- 5.2.7 Гидравлический расчёт сложного трубопровода с перемычками
- 5.2.8 Гидравлический расчёт разветвлённого соединения простых трубопроводов и сложного трубопровода с отводом
- 5.3 Технологический расчёт мн при стационарном режиме перекачки
- 5.3.1 Характеристики насосов и нпс
- 5.3.2 Уравнение баланса напоров
- 5.3.3 Особенности технологического расчёта мн с промежуточными перекачивающими станциями
- 5.3.4 Решение уравнения баланса напоров
- 5.4 Регулирование режимов работы мн и управление процессом перекачки
- 5.4.1 Изменение пропускной способности мн в процессе эксплуатации
- 5.4.2 Практика изменения режимов перекачки
- 5.4.3 Классификация методов регулирования
- Классификация методов регулирования
- 5.4.4 Дискретное регулирование характеристик нпс
- 5.4.5 Плавное регулирование характеристик нпс
- По трассе при регулировании дросселированием на промежуточной нпс
- 5.4.6 Группа методов, направленных на изменение характеристик лч
- 5.4.7 Выбор рациональных режимов перекачки
- 5.5 Технологический расчёт мн при последовательной перекачке
- 5.5.1 Особенности гидравлического расчёта нефтепровода при последовательной перекачке. Скачки напора в трубопроводе
- 5.5.2 Изменение расхода и давления на выходе нпс в процессе смены жидкостей
- 5.5.3 Уравнение баланса давлений при последовательной перекачке
- 5.6 Технологический расчёт мн при нестационарных процессах
- 5.6.1 Общие сведения о неустановившихся процессах и причинах их возникновения
- 5.6.2 Инерционные свойства потока нефти в трубопроводе. Формулы н.Е. Жуковского
- 5.6.3 Борьба с гидравлическим ударом
- 6. Технико-экономические показатели
- 6.1 Приведённые затраты
- 6.2 Капитальные вложения
- 6.3 Эксплуатационные расходы
- Библиографический список