5.6.3 Борьба с гидравлическим ударом
Различают активные и пассивные методы защиты трубопроводов от перегрузок по давлению.
К активным относится создание волны пониженного давления, идущей навстречу волне повышенного давления. Волна пониженного давления создается путем посылки сигнала по линии связи с остановленной НПС, на предшествующую для отключения на ней одного или нескольких насосных агрегатов. При этом возникает волна пониженного давления, двигающаяся по потоку. При встрече волн пониженного и повышенного давления они взаимно гасятся и, следовательно, опасного повышения давления в трубопроводе не произойдет (такая система внедрена на отдельных участках МН «Дружба»).
Недостатком данного метода защиты трубопроводов от перегрузок по давлению является необходимость обеспечения помехоустойчивости и высокой надежности линии связи. Кроме того, отключение насосов необходимо осуществлять на нескольких НПС, предшествующих остановленной, так как каждое отключение приводит к возникновению волны повышенного давления на предшествующем участке МН.
К пассивным средствам защиты трубопроводов от перегрузок относятся:
увеличение скорости закрытия запорной арматуры;
увеличение толщины стенки трубопровода;
гашения волны повышенного давления в месте ее возникновения
система сглаживания волн давления (ССВД).
Применение в качестве запорной арматуры, относительно медленно закрывающихся задвижек автоматически исключает резкое изменение скорости потока при изменении степени их открытия. Соответственно уменьшается и величина ударного давления. Увеличение толщины стенки закладывается на этапе проектирования МН т.к. согласно [4] расчет толщины стенки производится с использованием коэффициента перегрузки трубопроводов по давлению nP, т.е. толщина стенки завышается.
Эффективным методом уменьшения ударного давления является гашение волны повышенного давления непосредственно в месте ее возникновения (в этом случае исключается динамическая перегрузка всей линейной части трубопровода). Гашение волны повышенного давления у остановленной НПС осуществляется за счет того, что уменьшение расхода через остановленную НПС происходит постепенно, за время, соизмеримое с временем пробега ударной волной участка между НПС. Для этого в общем случае применяют автоматический сброс части перекачиваемой нефти в месте возникновения волны повышенного давления в специальный резервуар. На этом принципе основывается механизм действия ССВД.
По нормам проектирования системы сглаживания волн давления (ССВД) должны устанавливаться на промежуточных станциях магистральных трубопроводов диаметром 720 мм и выше. Необходимость применения ССВД на трубопроводах меньшего диаметра должна обосновываться расчетом.
ССВД должна срабатывать при повышении давления на трубопроводе на величину не более, чем на 0,3 МПа, происходящим со скоростью выше 0,3 МПа/с. Дальнейшее повышение давления в зависимости от настройки ССВД должно происходить плавно со скоростью от 10 до 30 кПа/с.
ССВД устанавливается на байпасе приемной линии НПС после фильтров-грязеуловителей. Диаметр байпасного трубопровода выбирается так, чтобы площадь его сечения была не менее половины площади сечения приемной линии. Объем резервуаров-сборников для сброса нефти должен быть не менее: 500 м3 для нефтепроводов диаметром 1220 мм, 400 м3 – 1020 мм, 200 м3 – 820 мм, 150 м3 – 720 мм и менее.
- Краус Юрий Александрович
- Содержание
- Введение
- 1. Общие сведения о магистральных нефтепроводах
- 1.1 Назначение и классификация нефтепроводов
- Краткая характеристика категорий участков мн
- 1.2 Устройство магистральных нефтепроводов
- 1.2.1 Состав объектов и сооружений мн
- 1.2.3 Нефтеперекачивающие станции
- 1.2.4 Линейные сооружения мн
- 1.3 Технологические схемы перекачки
- 2. Свойства нефтей
- 2.1. Классификация нефтей и контроль качества
- Типы товарной нефти
- Группы товарной нефти
- Виды товарной нефти
- 2.2. Физико-химические свойства и определение их расчётных значений
- 2.2.1. Плотность, сжимаемость и температурное расширение
- 2.2.2. Вязкость
- 2.2.3. Неньютоновские свойства нефтей
- 2.2.4. Испаряемость и давление насыщенных паров
- 2.2.5. Теплофизические свойства
- 3. Условия строительства
- 3.1 Классификация условий строительства
- 3.2 Теплофизическое влияние трубопровода на окружающий его массив грунта
- 3.2.1 Теплофизические свойства грунта
- Теплофизические характеристики грунтов
- 3.2.2 Распределение температуры в массиве грунта
- 3.3 Теплофизическое влияние массива грунта на перекачиваемы продукт. Расчетная температура
- 3.3.1. Изменение температуры по длине мн. Расчётная температура
- 3.3.2. Определение полного коэффициента теплопередачи от нефти в массив грунта
- Формулы Михеева
- 4. Конструктивные параметры трубопровода
- 4.1 Основные конструктивные параметры лч мн
- 4.1.1 Конструктивные схемы прокладки
- 4.1.2 Физико-механические характеристики сталей
- 4.1.3. Основные пространственные характеристики
- 4.2 Прочностной расчёт трубопровода по методу предельных состояниям
- 4.2.1 Схема нагружения подземного трубопровода
- 4.2.2 Расчёт несущей способности мн
- 4.2.3 Эпюра несущей способности и разращенных напоров
- 4.3 Деформируемость трубопровода
- 5. Технологические параметры
- 5.1 Основные технологические параметры мн
- 5.2 Гидравлический расчёт мн
- 5.2.1 Основные уравнения для гидравлических расчётов трубопроводов при установившемся течении
- 5.2.2 Гидравлические потери и гидравлические режимы перекачки
- Значения коэффициентов , m, для различных режимов и зон течения жидкости в трубопроводе круглого сечения
- 5.2.3 Гидравлический расчёт простого трубопровода
- 5.2.4 Гидравлический расчёт простого трубопровода с самотечными участками
- 5.2.5 Гидравлический расчёт последовательного соединения простых трубопроводов: трубопровод со вставкой
- 5.2.6 Гидравлический расчёт параллельного соединения простых трубопроводов: трубопровод с лупингом
- 5.2.7 Гидравлический расчёт сложного трубопровода с перемычками
- 5.2.8 Гидравлический расчёт разветвлённого соединения простых трубопроводов и сложного трубопровода с отводом
- 5.3 Технологический расчёт мн при стационарном режиме перекачки
- 5.3.1 Характеристики насосов и нпс
- 5.3.2 Уравнение баланса напоров
- 5.3.3 Особенности технологического расчёта мн с промежуточными перекачивающими станциями
- 5.3.4 Решение уравнения баланса напоров
- 5.4 Регулирование режимов работы мн и управление процессом перекачки
- 5.4.1 Изменение пропускной способности мн в процессе эксплуатации
- 5.4.2 Практика изменения режимов перекачки
- 5.4.3 Классификация методов регулирования
- Классификация методов регулирования
- 5.4.4 Дискретное регулирование характеристик нпс
- 5.4.5 Плавное регулирование характеристик нпс
- По трассе при регулировании дросселированием на промежуточной нпс
- 5.4.6 Группа методов, направленных на изменение характеристик лч
- 5.4.7 Выбор рациональных режимов перекачки
- 5.5 Технологический расчёт мн при последовательной перекачке
- 5.5.1 Особенности гидравлического расчёта нефтепровода при последовательной перекачке. Скачки напора в трубопроводе
- 5.5.2 Изменение расхода и давления на выходе нпс в процессе смены жидкостей
- 5.5.3 Уравнение баланса давлений при последовательной перекачке
- 5.6 Технологический расчёт мн при нестационарных процессах
- 5.6.1 Общие сведения о неустановившихся процессах и причинах их возникновения
- 5.6.2 Инерционные свойства потока нефти в трубопроводе. Формулы н.Е. Жуковского
- 5.6.3 Борьба с гидравлическим ударом
- 6. Технико-экономические показатели
- 6.1 Приведённые затраты
- 6.2 Капитальные вложения
- 6.3 Эксплуатационные расходы
- Библиографический список