7.2.I Распад аустенита в изотермических условиях
Чтобы произошел изотермический распад аустенита, необходимо нагреть сталь для получения однородной аустенитной структуры, а затем быстро перенести образец (или изделие) в соляную ванну, имеющую заданную температуру распада, и выдержать в ней определенное время. Во время этой изотермической выдержки и будет происходить распад аустенита, за которым наблюдают по изменению магнитных свойств или размеров образца. Отмечают при заданной температуре время начала распада аустенита и его окончания. Эти точки наносят на диаграмму распада аустенита и получают линии начала и окончания распада аустенита После его окончания охлаждение производится на воздухе.
Изучение процессов, происходящих в аустените при разных температурах переохлаждения относительно А1, привело к созданию диаграмм изотермического распада аустенита (С - образных кривых).
На рис. 7.4 представлена диаграмма изотермического распада аустенита эвтектоидной стали. Выше линии А1 находится температурная область устойчивого аустенита. Линия 1 показывает время начала распада аустенита; левее от нее располагается область переохлажденного аустенита. Линия 2 соответствует окончанию распада аустенита; правее нее - область существования продуктов распада аустенита. Горизонтальные линии Мн и Mк – соответствуют началу и концу мартенситного превращения.
Превращение
А1
А диффузионное
600 (перлитное)
промежуточ-
400 ное(бейнитное)
Мн
200 бездиффузион
А М ное(сдвиговое,
мартенситное)
0 Мк
-120
1 10 102 103 104 105 с
Рисунок 7.4 - Диаграмма изотермического распада аустенита эвтектоидной стали
Если образец, нагретый до температуры tн (рис.7.3), перенести в ванну с температурой t n , то переохлажденный аустенит сохраняется до момента а (инкубационный период), после чего начинается его распад. Заканчивается распад в момент д; при дальнейшей выдержке и охлаждении полученная структура сохраняется без изменения.
Строение и свойства получаемых структур сильно зависят от температуры распада аустенита. При этом меняются и характер получаемых структур и механизм распада аустенита. По этим признакам диаграмма изотермического распада делится на 3 температурных области: I - перлитную (А1 - 550°С), ІІ- промежуточную или бейнитную ( 550 – Мн) и ІІІ - мартенситную (Мн – Мк).
Превращение в перлитной области может быть только диффузионным: поскольку из аустенита с содержанием углерода 0,8% образуется феррит (равновесное содержание углерода менее 0,025%) и цементит (содержание углерода 6,67%), т.е. происходит существенное перераспределение атомов железа и углерода. Образующаяся при этом структура обычно состоит из пластин ферита и цементита. Причем нетрудно расчитать, что пластины цементита должны быть в 5 – 6 раз тоньше. Чем пластины феррита.
С понижением температуры (повышением степени переохлаждения) строение перлита становится более дисперсным, т.е. пластинки феррита и цементита становятся все более тонкими. Это происходит из-за действия двух конкурирующих факторов: с повышением степени переохлаждения выигрыш энергии т.е. стимул к превращению становится все больше, а диффузионная подвижность атомов – все меньше. Поэтому в начале перераспределение атомов происходит все в меньшем объеме, а затем меняется и механизм превращения (перлит – сорбит- троостит – бейнит - мартенсит), прочность и твердость стали по мере снижения температуры распада возрастают. Сорбит в оптическом микроскопе выглядит как темные зерна различного оттенка, пластинчатое строение его заметно лишь в отдельных зернах. Строение троостита в оптическом микроскопе не дифференцируется, он имеет вид сплошного черного поля. При наблюдении в электронном микроскопе четко обнаруживается пластинчатое строение троостита.
Твердость стали со структурами, получающимися при разных температурах распада, приведена в табл. 7.1.
Таблица 7.1 - Твердость эвтектоидной стали в зависимости от структуры
-
Структура
Твердость, НВ
Аустенит
180-200
Крупнопластнчатый перлит
180-200
Мелкопластинчатый перлит
220-240
Сорбит закалки
280-320
Троостит закалки
400-450
Верхний бейнит
450-500
Нижний бейнит
500-550
Мартенсит
600-650
В мартенситной области при температуре ниже Мн диффузия атомов углерода и самодиффузия атомов железа практически не происходят, поэтому мартенситное превращение носит бездиффузионный характер. Оно состоит в перестройке кристаллической решетки ГЦК в ОЦК путем группового сдвига атомов по определенным кристаллографическим плоскостям аустенита, вследствие чего кристаллы образующейся -фазы имеют форму пластин, а на шлифе - игл.
Углерод остается в решетке -Fe на тех же местах, где он располагался в -Fe. При этом количество углерода значительно превышает его предельную растворимость в -Fe, равную 0,02%. Поэтому получаемая структура, называемая мартенситом, представляет собой пересыщенный твердый раствор углерода в -Fe. Кристаллографическая решетка мартенсита из-за избытка углерода упруго искажается и становится тетрагональной. Из-за высоких внутренних напряжений мартенсит отличается большой твердостью и высокой хрупкостью. Чем сильнее степень пересыщения твердого раствора углеродом, тем больше становятся искажения, которые количественно оцениваются степенью тетрагональности с/а, и выше твердость.
Характерным отличием мартенситного превращения от перлитного является также то, что оно не происходит в изотермических условиях. Мартенситное превращение происходит только в условиях непрерывного охлаждения, начинаясь при температуре Мн и заканчиваясь при температуре Мк. Если прервать охлаждение стали в интервале мартенситного превращения, то превращение приостанавливается и возобновляется только после дальнейшего охлаждения. После окончания мартенситного превращения всегда остается незначительное количество нераспавшегося аустенита. Положение точек Мн и Мк зависит от содержания в сталях углерода (рис. 7.5) и легирующих элементов.
Рисунок 7.5 – Температура точек Мн и Мк в зависимости от содержания углерода
Бейнитная область является промежуточной как по температурному интервалу, так и по механизму превращения. Превращение имеет характерные черты как перлитного, так и мартенситного превращений. Диффузионная подвижность атомов железа практически нулевая, поэтому перестройка кристаллической решетки происходит сдвиговым путем, как в случае мартенситного превращения, и в результате получаются пластинчатые кристаллы несколько пересыщенной углеродом -фазы. Скорость диффузии углерода при этом еще значительна; вследствие чего атомы углерода перераспределяются диффузионным путем с образованием карбидной фазы. Продукты распада аустенита представляют собой слегка пересыщенный феррит и карбидные частицы, почти как в перлитной области.
Начинается превращение с перераспределения углерода в аустените. В областях обедненных углеродом повышается точка Мн и происходит сдвиговое превращение, а в областях, обогащенных углеродом выделяется карбидная фаза и также происходит мартенситное превращение в оставшемся твердом растворе. Структура, получающаяся в промежуточной области, называется бейнитом и разделяется на два типа. Верхний бейнит обладает меньшей твердостью из-за меньшей степени пересыщения углеродом и большей хрупкостью из-за того, что карбидные частицы выделяются преимущественно на границах пластин -фазы и имеет перистое строение. Нижний бейнит обладает большей твердостью из-за большей степени пересыщения углеродом -фазы и большей вязкостью из-за того, что частички карбидной фазы образыются внутри -кристаллов и имеет игольчатое строение. Для получение в структуре сталей весьма удачной по сочетанию механических свойств структуры нижнего бейнита существует специальный вид термической обработки – изотермическая закалка.
Таким образом изменяя условия распада аустенита, можно получать сталь с различной структурой и соответственно свойствами, что и используется в практике термической обработки.
Диаграммы изотермического распада аустенита в до- и заэвтектоидных сталях отличаются от диаграммы для эвтектоидной стали наличием области, в которой происходит выделение феррита, если сталь доэвтектоидная, или цементита, если сталь заэвтектоидная.
- 114 Марчук с.И., Петрущак с.В. Конспект лекций по курсу «Материаловедение»…
- Введение
- Строения материалов
- 2.1 Строение идеальных кристаллов
- 2.2 Дефекты кристаллического строения
- 2.3 Линейные дефектыМарчук с.И., Петрущак с.В. Конспект лекций по курсу «Материаловедение»…
- 2.4 Взаимодействие дефектов кристаллического строения
- 3.1 Упругая и пластическая деформация. Механизм пластической деформации.
- 3.2 Влияние холодной пластической деформации
- 3.3 Влияние нагрева на структуру и свойства деформированного металла.
- 4.1. Движущая сила кристаллизации
- 4.2. Гомогенная кристаллизация
- 4.3. Гетерогенная кристаллизация
- 4.4. Строение металлического слитка
- 4.5 Стеклование и аморфизация
- Двухкомпонентных систем
- 5.1 Диаграмма фазового равновесия сплавов с неограниченной растворимостью в жидком и твердом состоянии
- 5.2 Диаграмма фазового равновесия сплавов с неограниченной растворимостью в жидком и ограниченной растворимостью в твердом состоянии
- 5.2.1 Диаграммы состояния эвтектического типа
- 5.2.3 Двойная диаграмма состояния перитектического типа
- 5.2.4 Диаграммы состояния двух компонентов, образующих промежуточные фазы
- 5.2.5 Двойные диаграммы состояния сплавов полиморфных компонентов и промежуточных фаз
- Железо - углерод
- 6.1 Компоненты
- 6.2 Фазы в системе железо - углерод
- 6.3 Диаграмма состояния системы железо-углерод
- 6.4 Формирование структуры технического железа
- 6.5 Формирование структуры сталей
- 6.6 Влияние углерода и постоянных примесей на структуру и свойства сталей
- 6.7 Классификация и маркировка углеродистых сталей
- 6.8 Формирование структуры чугунов
- 6.8.1 Формирование структуры белых чугунов
- 6.8.2 Влияние скорости охлаждения на формирование структуры чугунов
- 6.8.3 Формирование структуры ковкого чугуна
- 6.8.4 Маркировка чугунов с графитом
- 7.1 Превращения при нагреве сталей
- 7.2 Превращения аустенита при охлаждении
- 7.2.I Распад аустенита в изотермических условиях
- 7.2.2 Распад аустенита в условиях непрерывного охлаждения
- 8.1 Отжиг
- 8.1.1 Отжиг первого рода
- 8.1.2 Отжиг второго рода
- 1 6 4,6 5 2 3 Отжиг 1 рода:
- 8.1.3 Виды отжига второго рода
- 8.2 Закалка стали
- 8.2.1 Способы объемной закалки
- 8.3 Отпуск закаленной стали
- 8.3.1 Превращения в закаленной стали при нагреве (отпуске )
- 8.3.2 Структура и свойства отпущенной стали
- 8.3.3 Виды отпуска
- 8.4 Поверхностное упрочнение стали
- 8.4.1 Поверхностная закалка
- 8.4.1.1 Структура и свойства стали после закалки твч
- 8.4.2 Химико-термическая обработка
- 8.4.2.1 Формирование структуры цементованного изделия
- 8.4.2.2 Термическая обработка после цементации
- Время, ч
- 8.4.3 Азотирование стали
- 9.1 Влияние легирующих элементов на свойства фаз в сталях
- 9.1.2 Влияние легирующих элементов на устойчивость переохлажденного аустенита
- 9.2 Маркировка легированных сталей
- 9.3 Классификация легированных сталей
- 9.4 Конструкционные стали
- 9.4.1 Низколегированные строительные стали
- 9.4.2 Машиностроительные стали
- 9.4.2.1 Цементуемые стали
- 9.4.2.2 Улучшаемые стали
- 9.4.2.3 Рессорно-пружинные стали
- 9.4.2.4 Шарикоподшипниковые стали
- 9.4.2.5 Износостойкие стали
- 9.4.2.6 Коррозионностойкие стали
- 9.5 Инструментальные стали
- 9.5.1 Стали для режущего инструмента
- 9.5.2 Стали для деформирующего инструмента (штамповые стали)
- 9.5.3 Стали для мерительного инструмента
- 9.6 Твердые сплавы
- 10.1 Титан и его сплавы
- 10.2 Алюминий и его сплавы
- 10.3Магний и его сплавы
- 10.4 Медь и ее сплавы
- 11.1 Структура и основные свойства полимеров
- 11.2 Пластические массы
- 11.3 Резина
- 11.4 Стекло
- 11.5 Ситалы.
- 11.6 Керамика
- 11.7 Композиционные материалы