11.7 Композиционные материалы
Композиционные материалы
Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.
Компоненты композиционного материала различны по геометрическому признаку.
Компонент, непрерывный во всем объеме композиционного материала, называется матрицей.
Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой.
Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.
В качестве матриц в композиционных материалах могут быть использованы металлы и их сплавы, полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее эксплуатационные свойства: плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред.
Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой прочностью, твердостью и модулем упругости и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.
Композиционные материалы классифицируют по геометрии наполнителя, расположению его в матрице, природе компонентов.
По геометрии наполнителя композиционные материалы подразделяются на три группы:
с нульмерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;
с одномерными наполнителями, один из размеров которых значительно превышает два других;
с двухмерными наполнителями, два размера которых значительно превышают третий.
По схеме расположения наполнителей выделяют три группы композиционных материалов:
с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;
с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;
с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.
По природе компонентов композиционные материалы разделяются на четыре группы:
композиционные материалы, содержащие компонент из металлов или сплавов;
композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;
композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;
композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др.
Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и арматурой происходит образование твердых растворов или химических соединений.
В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются изотропностью свойств.
В таких материалах матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5…10 % частиц наполнителя.
Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов.
Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава.
Промышленное применение нашли композиционные материалы на основе алюминия, упрочненные частицами оксида алюминия (Al2O3). Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества САП проявляются при температурах выше 300oС, когда алюминиевые сплавы разупрочняются. Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры 0,8 Тпл.
Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.
В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.
Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К – механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу.
Осуществляется создание нитевидных кристаллов вытягиванием жидкости через фильеры. Прочность кристаллов зависит от сечения и гладкости поверхности.
Композиционные материалы этого типа перспективны как высокожаропрочные материалы. Для увеличения к.п.д. тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al2O3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680oС выше 700 МПа).
Армирование сопл ракет из порошков вольфрама и молибдена производят кристаллами сапфира как в виде войлока, так и отдельных волокон, в результате этого удалось удвоить прочность материала при температуре 1650oС. Армирование пропиточного полимера стеклотекстолитов нитевидными волокнами увеличивает их прочность. Армирование литого металла снижает его хрупкость в конструкциях. Перспективно упрочнение стекла неориентированными нитевидными кристаллами.
Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, титана, магния – в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях.
Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.
Полимерные композиционные материалы. Особенностью является то, что матрицу образуют различные полимеры, служащие связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита.
Формирование полимерных композиционных материалов осуществляется прессованием, литьем под давлением, экструзией, напылением.
Широкое применение находят смешанные полимерные композиционные материалы, куда входят металлические и полимерные составляющие, которые дополняют друг друга по свойствам. Например, подшипники, работающие в условиях сухого трения, изготовляют из комбинации фторопласта и бронзы, что обеспечивает самосмазываемость и отсутствие ползучести.
Созданы материалы на основе полиэтилена, полистирола с наполнителями в виде асбеста и других волокон, обладающие высокими прочностью и жесткостью.
- 114 Марчук с.И., Петрущак с.В. Конспект лекций по курсу «Материаловедение»…
- Введение
- Строения материалов
- 2.1 Строение идеальных кристаллов
- 2.2 Дефекты кристаллического строения
- 2.3 Линейные дефектыМарчук с.И., Петрущак с.В. Конспект лекций по курсу «Материаловедение»…
- 2.4 Взаимодействие дефектов кристаллического строения
- 3.1 Упругая и пластическая деформация. Механизм пластической деформации.
- 3.2 Влияние холодной пластической деформации
- 3.3 Влияние нагрева на структуру и свойства деформированного металла.
- 4.1. Движущая сила кристаллизации
- 4.2. Гомогенная кристаллизация
- 4.3. Гетерогенная кристаллизация
- 4.4. Строение металлического слитка
- 4.5 Стеклование и аморфизация
- Двухкомпонентных систем
- 5.1 Диаграмма фазового равновесия сплавов с неограниченной растворимостью в жидком и твердом состоянии
- 5.2 Диаграмма фазового равновесия сплавов с неограниченной растворимостью в жидком и ограниченной растворимостью в твердом состоянии
- 5.2.1 Диаграммы состояния эвтектического типа
- 5.2.3 Двойная диаграмма состояния перитектического типа
- 5.2.4 Диаграммы состояния двух компонентов, образующих промежуточные фазы
- 5.2.5 Двойные диаграммы состояния сплавов полиморфных компонентов и промежуточных фаз
- Железо - углерод
- 6.1 Компоненты
- 6.2 Фазы в системе железо - углерод
- 6.3 Диаграмма состояния системы железо-углерод
- 6.4 Формирование структуры технического железа
- 6.5 Формирование структуры сталей
- 6.6 Влияние углерода и постоянных примесей на структуру и свойства сталей
- 6.7 Классификация и маркировка углеродистых сталей
- 6.8 Формирование структуры чугунов
- 6.8.1 Формирование структуры белых чугунов
- 6.8.2 Влияние скорости охлаждения на формирование структуры чугунов
- 6.8.3 Формирование структуры ковкого чугуна
- 6.8.4 Маркировка чугунов с графитом
- 7.1 Превращения при нагреве сталей
- 7.2 Превращения аустенита при охлаждении
- 7.2.I Распад аустенита в изотермических условиях
- 7.2.2 Распад аустенита в условиях непрерывного охлаждения
- 8.1 Отжиг
- 8.1.1 Отжиг первого рода
- 8.1.2 Отжиг второго рода
- 1 6 4,6 5 2 3 Отжиг 1 рода:
- 8.1.3 Виды отжига второго рода
- 8.2 Закалка стали
- 8.2.1 Способы объемной закалки
- 8.3 Отпуск закаленной стали
- 8.3.1 Превращения в закаленной стали при нагреве (отпуске )
- 8.3.2 Структура и свойства отпущенной стали
- 8.3.3 Виды отпуска
- 8.4 Поверхностное упрочнение стали
- 8.4.1 Поверхностная закалка
- 8.4.1.1 Структура и свойства стали после закалки твч
- 8.4.2 Химико-термическая обработка
- 8.4.2.1 Формирование структуры цементованного изделия
- 8.4.2.2 Термическая обработка после цементации
- Время, ч
- 8.4.3 Азотирование стали
- 9.1 Влияние легирующих элементов на свойства фаз в сталях
- 9.1.2 Влияние легирующих элементов на устойчивость переохлажденного аустенита
- 9.2 Маркировка легированных сталей
- 9.3 Классификация легированных сталей
- 9.4 Конструкционные стали
- 9.4.1 Низколегированные строительные стали
- 9.4.2 Машиностроительные стали
- 9.4.2.1 Цементуемые стали
- 9.4.2.2 Улучшаемые стали
- 9.4.2.3 Рессорно-пружинные стали
- 9.4.2.4 Шарикоподшипниковые стали
- 9.4.2.5 Износостойкие стали
- 9.4.2.6 Коррозионностойкие стали
- 9.5 Инструментальные стали
- 9.5.1 Стали для режущего инструмента
- 9.5.2 Стали для деформирующего инструмента (штамповые стали)
- 9.5.3 Стали для мерительного инструмента
- 9.6 Твердые сплавы
- 10.1 Титан и его сплавы
- 10.2 Алюминий и его сплавы
- 10.3Магний и его сплавы
- 10.4 Медь и ее сплавы
- 11.1 Структура и основные свойства полимеров
- 11.2 Пластические массы
- 11.3 Резина
- 11.4 Стекло
- 11.5 Ситалы.
- 11.6 Керамика
- 11.7 Композиционные материалы